Unknown

Dataset Information

0

Empagliflozin improves post-infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status.


ABSTRACT: Sodium-glucose co-transporter-2 inhibitors (SGLT2i) have shown to prevent heart failure progression, although the mechanisms remain poorly understood. Here we evaluated the effect of empagliflozin (EMPA, SGLT2i) in cardiac remodeling after myocardial infarction, the interplay with diabetes status and the role of cardiac GTP enzyme cyclohydrolase 1 (cGCH1). A rat model of diabetes (50 mg/kg streptozotocin, i.p.) was subjected to myocardial infarction and left ventricular systolic dysfunction, by ligation of the left anterior descending coronary artery. EMPA therapy significantly improved cardiac remodeling parameters and ameliorated processes of fibrosis and hypertrophy, in both non-diabetic and diabetic rats. This cardioprotective effect related with a significant increase in myocardial expression levels of cGCH1, which led to activation of nNOS and eNOS, and inhibition of iNOS, and subsequently resulted in increasing of NO levels and decreasing O2.- and nitrotyrosine levels. These effects were replicated in a cardiomyocyte biomechanical stretching diabetic model, where silencing cGCH1 blocked the preventive effect of EMPA. The beneficial effects were observed irrespective of diabetes status, although the magnitude was greater in presence of diabetes. Empagliflozin improves myocardial remodeling after myocardial infarction through overexpression of cGCH1, and irrespective of diabetes status.

SUBMITTER: Asensio Lopez MDC 

PROVIDER: S-EPMC7419540 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Empagliflozin improves post-infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status.

Asensio Lopez Maria Del Carmen MDC   Lax Antonio A   Hernandez Vicente Alvaro A   Saura Guillen Elena E   Hernandez-Martinez Antonio A   Fernandez Del Palacio Maria Josefa MJ   Bayes-Genis Antoni A   Pascual Figal Domingo A DA  

Scientific reports 20200811 1


Sodium-glucose co-transporter-2 inhibitors (SGLT2i) have shown to prevent heart failure progression, although the mechanisms remain poorly understood. Here we evaluated the effect of empagliflozin (EMPA, SGLT2i) in cardiac remodeling after myocardial infarction, the interplay with diabetes status and the role of cardiac GTP enzyme cyclohydrolase 1 (cGCH1). A rat model of diabetes (50 mg/kg streptozotocin, i.p.) was subjected to myocardial infarction and left ventricular systolic dysfunction, by  ...[more]

Similar Datasets

| S-EPMC5465102 | biostudies-literature
| S-EPMC6978838 | biostudies-literature
| S-EPMC8577301 | biostudies-literature
| S-EPMC2818799 | biostudies-literature
| S-EPMC2737525 | biostudies-literature
| S-EPMC4132650 | biostudies-literature
| S-EPMC4407186 | biostudies-literature
| S-EPMC4005822 | biostudies-literature
| S-EPMC1635435 | biostudies-literature
| S-EPMC3313957 | biostudies-literature