Unknown

Dataset Information

0

The Mechanics of Mitotic Cell Rounding.


ABSTRACT: When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.

SUBMITTER: Taubenberger AV 

PROVIDER: S-EPMC7423972 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Mechanics of Mitotic Cell Rounding.

Taubenberger Anna V AV   Baum Buzz B   Matthews Helen K HK  

Frontiers in cell and developmental biology 20200806


When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitoti  ...[more]

Similar Datasets

| S-EPMC5021607 | biostudies-literature
| S-EPMC7539203 | biostudies-literature
| S-EPMC8562848 | biostudies-literature
| S-EPMC4931277 | biostudies-literature
| S-EPMC9205045 | biostudies-literature
| S-EPMC5668354 | biostudies-literature
| S-EPMC5460904 | biostudies-literature
| S-EPMC9059391 | biostudies-literature
| S-EPMC7953256 | biostudies-literature
| S-EPMC7132200 | biostudies-literature