Unknown

Dataset Information

0

Pharmacogenomics of COVID-19 therapies.


ABSTRACT: A new global pandemic of coronavirus disease 2019 (COVID-19) has resulted in high mortality and morbidity. Currently numerous drugs are under expedited investigations without well-established safety or efficacy data. Pharmacogenomics may allow individualization of these drugs thereby improving efficacy and safety. In this review, we summarized the pharmacogenomic literature available for COVID-19 drug therapies including hydroxychloroquine, chloroquine, azithromycin, remdesivir, favipiravir, ribavirin, lopinavir/ritonavir, darunavir/cobicistat, interferon beta-1b, tocilizumab, ruxolitinib, baricitinib, and corticosteroids. We searched PubMed, reviewed the Pharmacogenomics Knowledgebase (PharmGKB®) website, Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines, the U.S. Food and Drug Administration (FDA) pharmacogenomics information in the product labeling, and the FDA pharmacogenomics association table. We found several drug-gene variant pairs that may alter the pharmacokinetics of hydroxychloroquine/chloroquine (CYP2C8, CYP2D6, SLCO1A2, and SLCO1B1); azithromycin (ABCB1); ribavirin (SLC29A1, SLC28A2, and SLC28A3); and lopinavir/ritonavir (SLCO1B1, ABCC2, CYP3A). We also identified other variants, that are associated with adverse effects, most notable in hydroxychloroquine/chloroquine (G6PD; hemolysis), ribavirin (ITPA; hemolysis), and interferon ? -1b (IRF6; liver toxicity). We also describe the complexity of the risk for QT prolongation in this setting because of additive effects of combining more than one QT-prolonging drug (i.e., hydroxychloroquine/chloroquine and azithromycin), increased concentrations of the drugs due to genetic variants, along with the risk of also combining therapy with potent inhibitors. In conclusion, although direct evidence in COVID-19 patients is lacking, we identified potential actionable genetic markers in COVID-19 therapies. Clinical studies in COVID-19 patients are deemed warranted to assess potential roles of these markers.

SUBMITTER: Takahashi T 

PROVIDER: S-EPMC7435176 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacogenomics of COVID-19 therapies.

Takahashi Takuto T   Luzum Jasmine A JA   Nicol Melanie R MR   Jacobson Pamala A PA  

NPJ genomic medicine 20200818


A new global pandemic of coronavirus disease 2019 (COVID-19) has resulted in high mortality and morbidity. Currently numerous drugs are under expedited investigations without well-established safety or efficacy data. Pharmacogenomics may allow individualization of these drugs thereby improving efficacy and safety. In this review, we summarized the pharmacogenomic literature available for COVID-19 drug therapies including hydroxychloroquine, chloroquine, azithromycin, remdesivir, favipiravir, rib  ...[more]

Similar Datasets

| S-EPMC3099313 | biostudies-literature
| S-BSST563 | biostudies-other
| S-EPMC9381694 | biostudies-literature
| S-EPMC7174622 | biostudies-literature
| S-EPMC7920448 | biostudies-literature
| S-EPMC7243039 | biostudies-literature
| S-EPMC7441765 | biostudies-literature
| S-EPMC8155790 | biostudies-literature
| S-EPMC9576910 | biostudies-literature
| S-BSST416 | biostudies-other