Project description:BackgroundThe mechanisms underlying the known link between overweight/obesity and childhood asthma are unclear. We aimed to identify differentially expressed genes and pathways associated with obesity-related asthma through a transcriptomic analysis of nasal airway epithelium.MethodsWe compared the whole transcriptome in nasal airway epithelium of youth with overweight or obesity and asthma with that of youth of normal weight and asthma, using RNA sequencing data from a cohort of 235 Puerto Ricans aged 9-20 years (EVA-PR) and an independent cohort of 66 children aged 6-16 years in Pittsburgh (VDKA). Differential expression analysis adjusting for age, sex, sequencing plate number, and sample sorting protocol, and the first five principal components were performed independently in each cohort. Results from the two cohorts were combined in a transcriptome-wide meta-analysis. Gene enrichment and network analyses were performed on top genes.ResultsIn the meta-analysis, 29 genes were associated with obesity-related asthma at an FDR-adjusted p <.05, including pro-inflammatory genes known to be differentially expressed in adipose tissue of obese subjects (e.g., CXCL11, CXCL10, and CXCL9) and several novel genes. Functional enrichment analyses showed that pathways for interferon signaling, and innate and adaptive immune responses were down-regulated in overweight/obese youth with asthma, while pathways related to ciliary structure or function were up-regulated. Upstream regulatory analysis predicted significant inhibition of the IRF7 pathway. Network analyses identified "hub" genes like GBP5 and SOCS1.ConclusionOur transcriptome-wide analysis of nasal airway epithelium identified biologically plausible genes and pathways for obesity-related asthma in youth.
Project description:We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma versus healthy controls. We identified 119 differentially methylated regions (DMRs) and 118 differentially methylated probes (DMPs) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. Hypo- and hypermethylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. case control design with nasal epithelial cells from 36 atopic asthmatic and 33 nonatopic nonasthmatic children from the inner city
Project description:We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma versus healthy controls. We identified 119 differentially methylated regions (DMRs) and 118 differentially methylated probes (DMPs) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. Hypo- and hypermethylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma.
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis. case control design with nasal epithelial cells from 36 atopic asthmatic and 36 nonatopic nonasthmatic children from the inner city
Project description:Background: Nasal epithelia are emerging as a proxy measure of gene expression of the airway epithelium in asthma. We hypothesized that epigenetic marks regulate gene expression of the nasal epithelia and consequently may provide a novel target for allergic asthma. Methods: We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma [N=36] versus healthy controls [N=36]. Results were validated in an independent population of asthmatics [N=30]. Results: We identified 186 genes with significant methylation changes, either as regions (differentially methylated regions [DMRs]) or single CpGs (differentially methylated probes [DMPs]) after adjustment for age, gender, race/ethnicity, batch effects, inflation, and multiple comparisons (false discovery rate-adjusted q<0.05). Genes differentially methylated include those with established roles in asthma and atopy, components of the extracellular matrix, genes related to immunity, cell adhesion, epigenetic regulation, and airway obstruction. The methylation changes are large (median 9.5%, range: 2.6-29.5% methylation change) and similar in magnitude to those observed in malignancies. Hypo- and hyper-methylated genes were associated with increased and decreased gene expression respectively (P<2.8x10-6 for DMRs and P<7.8x10-10 for DMPs). Quantitative analysis of methylation-expression relationships in 53 differentially expressed genes demonstrated that 32 (60%) have significant (q<0.05) methylation-expression relationships within 5kb of the gene. 10 loci selected based on the relevance to asthma, magnitude of methylation change, and asthma specific methylation-expression relationships were validated in an independent cohort of children with asthma. Conclusions: Our findings that epigenetic marks in respiratory epithelia are associated with allergic asthma in inner-city children provide new targets for biomarker development, and novel approaches to understanding disease pathogenesis.
Project description:BackgroundEpigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children.MethodsWe did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts.FindingsDNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%).InterpretationWe identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants.FundingUS National Institutes of Health.
Project description:Epidermal growth factor receptors play an important role in airway epithelial cell growth and differentiation. The current study investigates the expression profiles of EGF, EGFR and ERBB4 in patients with nasal polyps (NP), and their response to glucocorticosteroid (GC) treatment. Fifty patients with NP (40 without GC treatment and 10 with oral GC) and 20 control subjects with septal deviation were recruited into the study. Protein levels of EGF, EGFR, and ERBB4 were evaluated by immune-staining. In healthy nasal epithelium, EGF and EGFR localized within p63+ basal cells, while ERBB4 localized within ciliated cells. GC-naïve NP epithelium showed weak expression of EGF in 90% of samples versus 5% of controls. EGFR was significantly increased in the epithelium with basal cell hyperplasia from GC-naïve NPs (78%, 31/40) compared to controls (23%, 4/17). EGFR was also found in some degranulating goblet cells. ERBB4 expression was significantly higher in hyperplastic epithelium from GC-naïve NPs (65%, 26/40) than in controls (6%, 1/17). GC treatment restored the EGF expression and normalized the EGFR and ERBB4 expression in NPs. Differential expression patterns of EGF, EGFR, and ERBB4 are essential in epithelial restitution and remodeling in nasal epithelium.
Project description:Genomewide DNA methylation profiling of nasal DNA from control and asthmatic children. Methylation profiles were generated by the Illumina Infinium HumanMethylation450 beadchips.
Project description:To identify genetic determinants of airway dysfunction, we performed a transcriptome-wide association study for asthma by combining RNA-seq data from the nasal airway epithelium of 681 children, with UK Biobank genetic association data. Our airway analysis identified 95 asthma genes, 58 of which were not identified by transcriptome-wide association analyses using other asthma-relevant tissues. Among these genes were MUC5AC, an airway mucin, and FOXA3, a transcriptional driver of mucus metaplasia. Muco-ciliary epithelial cultures from genotyped donors revealed that the MUC5AC risk variant increases MUC5AC protein secretion and mucus secretory cell frequency. Airway transcriptome-wide association analyses for mucus production and chronic cough also identified MUC5AC. These cis-expression variants were associated with trans effects on expression; the MUC5AC variant was associated with upregulation of non-inflammatory mucus secretory network genes, while the FOXA3 variant was associated with upregulation of type-2 inflammation-induced mucus-metaplasia pathway genes. Our results reveal genetic mechanisms of airway mucus pathobiology.
Project description:While DNA methylation plays a role in T-helper (Th) cell maturation, its potential dysregulation in the non-atopic Th1-polarized systemic inflammation observed in obesity-associated asthma is unknown. We studied DNA methylation epigenome-wide in peripheral blood mononuclear cells (PBMCs) from 8 obese asthmatic pre-adolescent children and compared it to methylation in PBMCs from 8 children with asthma alone, obesity alone and healthy controls. Differentially methylated loci implicated certain biologically relevant molecules and pathways. PBMCs from obese asthmatic children had distinctive DNA methylation patterns, with decreased promoter methylation of CCL5, IL2RA and TBX21, genes encoding proteins linked with Th1 polarization, and increased promoter methylation of FCER2, a low-affinity receptor for IgE, and of TGFB1, inhibitor of Th cell activation. T-cell signaling and macrophage activation were the two primary pathways that were selectively hypomethylated in obese asthmatics. These findings suggest that dysregulated DNA methylation is associated with non-atopic inflammation observed in pediatric obesity-associated asthma.