Antimicrobial effects of positively charged, conductive electrospun polymer fibers.
Ontology highlight
ABSTRACT: In recent years, electrospun polymer fibers have gained attention for various antibacterial applications. In this work, the effect of positively charged polymer fiber mats as antibacterial gauze is studied using electrospun poly(caprolactone) and polyaniline nanofibers. Chloroxylenol, an established anti-microbial agent is used for the first time as a secondary dopant to polyaniline during the electrospinning process to make the surface of the polyaniline fiber positively charged. Both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are used to investigate the antibacterial activity of the positively charged and uncharged polymer surfaces. The results surprisingly show that the polyaniline surface can inhibit the growth of both bacteria even when chloroxylenol is used below its minimum inhibitory concentration. This study provides new insights allowing the better understanding of dopant-based, intrinsically conducting polymer surfaces for use as antibacterial fiber mats.
SUBMITTER: Bhattacharya S
PROVIDER: S-EPMC7438602 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA