Unknown

Dataset Information

0

Application of Dielectric Thermal Analysis to Screen Electrical Insulation Candidates for High-Voltage Electric Machines.


ABSTRACT: Dielectric analysis (DEA) is a thermal analysis technique primarily developed to optimize polymer cure profiles in manufacturing facilities to reduce scrap and to diagnose insulation. The recent implementation of this technique to characterize the behavior of new in-house electrical insulation formulations has been advantageous in providing a better understanding of insulation exposed to thermal and electrical stresses at their anticipated operating temperatures and frequencies. Because the dielectric properties of in-house high-voltage insulation formulations are not well understood, DEA was initially carried out using a well-established commercially available polyimide film. This report documents the findings from using dielectric thermal analysis to characterize the electrical properties of commercially available polyimide films and in-house polyimide composite formulations that were exposed to environments anticipated in high-voltage electric motors. The effects of moisture content and thermal aging on the dielectric properties of commercial polyimide are also reported. Information presented in this paper illustrates that DEA can be used as a viable technique to screen candidates for new electrical insulation.

SUBMITTER: Williams TS 

PROVIDER: S-EPMC7439268 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Application of Dielectric Thermal Analysis to Screen Electrical Insulation Candidates for High-Voltage Electric Machines.

Williams Tiffany S TS   Hammoud Ahmad A   Kelly Marisabel M  

ACS omega 20200805 32


Dielectric analysis (DEA) is a thermal analysis technique primarily developed to optimize polymer cure profiles in manufacturing facilities to reduce scrap and to diagnose insulation. The recent implementation of this technique to characterize the behavior of new in-house electrical insulation formulations has been advantageous in providing a better understanding of insulation exposed to thermal and electrical stresses at their anticipated operating temperatures and frequencies. Because the diel  ...[more]

Similar Datasets

| S-EPMC8480926 | biostudies-literature
| S-EPMC11314442 | biostudies-literature
| S-EPMC6723785 | biostudies-literature
| S-EPMC9417942 | biostudies-literature
| S-EPMC10007525 | biostudies-literature
| S-EPMC6918136 | biostudies-literature
| S-EPMC8912367 | biostudies-literature
| S-EPMC7728825 | biostudies-literature
| S-EPMC10097086 | biostudies-literature
| S-EPMC6133944 | biostudies-literature