Project description:We investigated the kinetics of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies in 7 asymptomatic persons and 11 patients with pneumonia. The geometric mean titer of neutralizing antibodies declined from 219.4 at 2 months to 143.7 at 5 months after infection, indicating a waning antibody response.
Project description:Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is continuously and rapidly circulating at present. Asymptomatic patients have been proven to be contagious and thus pose a significant infection control challenge. Here we describe the characteristics of asymptomatic patients with SARS-CoV-2 infection in Jinan, Shandong province, China. A total of 47 patients with confirmed COVID-19 were recruited. Among them, 11 patients were categorized as asymptomatic cases. We found that the asymptomatic patients in Jinan were relatively young and were mainly clustered cases. The laboratory indicators and lung lesion on chest CT were mild. No special factors were found accounting for the presence or absence of symptoms. The presence of asymptomatic patients increased the difficulty of screening. It is necessary to strengthen the identification of such patients in the future.
Project description:Waning humoral immunity in coronavirus disease patients has raised concern over usefulness of serologic testing. We investigated antibody responses of 58 persons 8 months after asymptomatic or mildly symptomatic infection with severe acute respiratory syndrome coronavirus 2. For 3 of 4 immunoassays used, seropositivity rates were high (69.0%-91.4%).
Project description:Over 40% of the coronavirus disease 2019 (COVID-19) COVID-19 patients were asymptomatically infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune responses of these asymptomatic individuals is a critical factor for developing the strategy to contain the COVID-19 pandemic. Here, we determined the viral dynamics and antibody responses among 143 asymptomatic individuals identified in a massive screening of more than 5 million people in eight districts of Wuhan in May 2020. Asymptomatic individuals were admitted to the government-designated centralized sites in accordance with policy. The incidence rate of asymptomatic infection is ~2.92/100,000. These individuals had low viral copy numbers (peaked at 315 copies/mL) and short-lived antibody responses with the estimated diminish time of 69 days. The antibody responses in individuals with persistent SARS-CoV-2 infection is much longer with the estimated diminish time of 257 days. These results imply that the immune responses in the asymptomatic individuals are not potent enough for preventing SARS-CoV-2 re-infection, which has recently been reported in recovered COVID-19 patients. This casts doubt on the efficacy of forming "herd-immunity" through natural SARS-CoV-2 infection and urges for the development of safe and effective vaccines.
Project description:Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-PCR cycle threshold (Ct) of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.
Project description:ObjectiveTo examine the clinical characteristics of patients with asymptomatic novel coronavirus disease 2019 (COVID-19) and compare them with those of patients with mild disease.DesignA retrospective cohort study.SettingMultiple medical centers in Wuhan, Hubei, China.ParticipantsA total of 3,263 patients with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection between February 4, 2020, and April 15, 2020.Main outcome measuresPatient demographic characteristics, medical history, vital signs, and laboratory and chest computed tomography (CT) findings.ResultsA total of 3,173 and 90 patients with mild and moderate, and asymptomatic COVID-19, respectively, were included. A total of 575 (18.2%) symptomatic patients and 4 (4.4%) asymptomatic patients developed the severe illness. All asymptomatic patients recovered; no deaths were observed in this group. The median duration of viral shedding in asymptomatic patients was 17 (interquartile range, 9.25-25) days. Patients with higher levels of ultrasensitive C-reactive protein (odds ratio [OR] = 1.025, 95% confidence interval [CI], 1.01-1.04), lower red blood cell volume distribution width (OR = 0.68, 95% CI 0.51-0.88), lower creatine kinase Isoenzyme(0.94, 0.89-0.98) levels, or lower lesion ratio (OR = 0.01, 95% CI 0.00-0.33) at admission were more likely than their counterparts to have asymptomatic disease.ConclusionsPatients with younger ages and fewer comorbidities are more likely to be asymptomatic. Asymptomatic patients had similar laboratory characteristics and longer virus shedding time than symptomatic patients; screen and isolation during their infection were helpful to reduce the risk of SARS-CoV-2 transmission.
Project description:BackgroundA longitudinal study was performed to determine the breadth, kinetics, and correlations of systemic and mucosal antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.MethodsTwenty-six unvaccinated adults with confirmed coronavirus disease 2019 (COVID-19) were followed for 6 months with 3 collections of blood, nasal secretions, and stool. Control samples were obtained from 16 unvaccinated uninfected individuals. SARS-CoV-2 neutralizing and binding antibody responses were respectively evaluated by pseudovirus assays and multiplex bead arrays.ResultsNeutralizing antibody responses to SARS-CoV-2 were detected in serum and respiratory samples for 96% (25/26) and 54% (14/26), respectively, of infected participants. Robust binding antibody responses against SARS-CoV-2 spike protein and S1, S2, and receptor binding (RBD) domains occurred in serum and respiratory nasal secretions, but not in stool samples. Serum neutralization correlated with RBD-specific immunoglobulin (Ig)G, IgM, and IgA in serum (Spearman ρ = 0.74, 0.66, and 0.57, respectively), RBD-specific IgG in respiratory secretions (ρ = 0.52), disease severity (ρ = 0.59), and age (ρ = 0.40). Respiratory mucosal neutralization correlated with RBD-specific IgM (ρ = 0.42) and IgA (ρ = 0.63).ConclusionsSustained antibody responses occurred after SARS-CoV-2 infection. Notably, there was independent induction of IgM and IgA binding antibody and neutralizing responses in systemic and respiratory compartments. These observations have implications for current vaccine strategies and understanding SARS-CoV-2 reinfection and transmission.
Project description:While waning immunity and SARS-CoV-2 variant immune escape continue to result in high infection rates worldwide, associations between longitudinal quantitative, qualitative, and functional humoral immune responses after SARS-CoV-2 infection remain unclear. In this study, we found significant waning of antibody against Spike S1 (R = -0.32, p = 0.035) and N protein (R = -0.39, p = 0.008), while RBD antibody moderately decreased (R = -0.19, p = 0.203). Likewise, neutralizing antibody titer (ND50) waned over time (R = -0.46, p = 0.001). In contrast, antibody avidity increased significantly over time for Spike S1 (R = 0.62, p = 6.0e-06), RBD (R = 0.54, p = 2.0e-04), and N (R = 0.33, p = 0.025) antibodies. Across all humoral responses, ND50 strongly associated with Spike S1 (R = 0.85, p = 2.7e-13) and RBD (R = 0.78, p = 2.9e-10) antibodies. Our findings provide longitudinal insight into humoral immune responses after infection and imply the potential of Spike S1/RBD antibody titer as surrogate correlates of protection.