Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments.
Ontology highlight
ABSTRACT: Chimeric antigen receptor (CAR) T-cell therapy is effective in the treatment of cancers of hematopoietic origin. In the immunosuppressive solid tumor environment, CAR T cells encounter obstacles that compromise their efficacy. We developed a strategy to address these barriers by having CAR T cells secrete single-domain antibody fragments [variable heavy domain of heavy chain antibodies (VHH) or nanobodies] that can modify the intratumoral immune landscape and thus support CAR T-cell function in immunocompetent animals. VHHs are small in size and able to avoid domain swapping when multiple nanobodies are expressed simultaneously-features that can endow CAR T cells with desirable properties. The secretion of an anti-CD47 VHH by CAR T cells improves engagement of the innate immune system, enables epitope spreading, and can enhance the antitumor response. CAR T cells that secrete anti-PD-L1 or anti-CTLA-4 nanobodies show improved persistence and demonstrate the versatility of this approach. Furthermore, local delivery of secreted anti-CD47 VHH-Fc fusions by CAR T cells at the tumor site limits their systemic toxicity. CAR T cells can be further engineered to simultaneously secrete multiple modalities, allowing for even greater tailoring of the antitumor immune response.
SUBMITTER: Xie YJ
PROVIDER: S-EPMC7446749 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA