Unknown

Dataset Information

0

Restricting extracellular Ca2+ on gefitinib-resistant non-small cell lung cancer cells reverses altered epidermal growth factor-mediated Ca2+ response, which consequently enhances gefitinib sensitivity.


ABSTRACT: Non-small cell lung cancer (NSCLC), one of the leading causes of cancer-related death, has a low 5-year survival rate owing to the inevitable acquired resistance toward antitumor drugs, platinum-based chemotherapy, and targeted therapy. Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling activates downstream events leading to phospholipase C/inositol trisphosphate (IP3)/Ca2+ release from IP3-sensitive Ca2+ stores to modulate cell proliferation, motility, and invasion. However, the role of EGFR-mediated Ca2+ signaling in acquired drug resistance is not fully understood. Here, we analyzed alterations of intracellular Ca2+ ([Ca2+]i) responses between gefitinib-sensitive NSCLC PC-9 cells and gefitinib-resistant NSCLC PC-9/GR cells, and we found that acute EGF treatment elicited intracellular Ca2+ ([Ca2+]i) oscillations in PC-9 cells but not in PC-9/GR cells. PC-9/GR cells presented a more sustained basal [Ca2+]i level, lower endoplasmic reticulum Ca2+ level, and higher spontaneous extracellular Ca2+ ([Ca2+]e) influx than PC-9 cells. Notably, restricting [Ca2+]e in both cell types induced identical [Ca2+]i oscillations, dependent on phospholipase C and EGFR activation. Consequently, restricting [Ca2+]e in PC-9/GR cells upregulated gefitinib-mediated poly (ADP-ribose) polymerase cleavage, an increase in Bax/Bcl-2 ratio, cytotoxicity, and apoptosis. In addition, nuclear factor of activated T cell (NFAT1) induction in response to EGF was inhibited by gefitinib in PC-9 cells, whereas EGF-mediated NFAT1 induction in PC-9/GR cells was sustained regardless of gefitinib treatment. Restricting [Ca2+]e in PC-9/GR cells significantly reduced EGF-mediated NFAT1 induction. These findings indicate that spontaneous [Ca2+]e influx in NSCLC cells plays a pivotal role in developing acquired drug resistance and suggest that restricting [Ca2+]e may be a potential strategy for modulating drug-sensitivity.

SUBMITTER: Kim MS 

PROVIDER: S-EPMC7447054 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Restricting extracellular Ca2+ on gefitinib-resistant non-small cell lung cancer cells reverses altered epidermal growth factor-mediated Ca2+ response, which consequently enhances gefitinib sensitivity.

Kim Mi Seong MS   Kim So Hui SH   Yang Sei Hoon SH   Kim Min Seuk MS  

PloS one 20200825 8


Non-small cell lung cancer (NSCLC), one of the leading causes of cancer-related death, has a low 5-year survival rate owing to the inevitable acquired resistance toward antitumor drugs, platinum-based chemotherapy, and targeted therapy. Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling activates downstream events leading to phospholipase C/inositol trisphosphate (IP3)/Ca2+ release from IP3-sensitive Ca2+ stores to modulate cell proliferation, motility, and invasion. However, the role o  ...[more]

Similar Datasets

| S-EPMC7997352 | biostudies-literature
| S-EPMC8161200 | biostudies-literature
| S-EPMC2862125 | biostudies-literature
| S-EPMC3224393 | biostudies-literature
| S-EPMC3608937 | biostudies-literature
| S-EPMC6689817 | biostudies-literature
2006-08-31 | GSE4342 | GEO
| S-EPMC3121497 | biostudies-literature
| S-EPMC6020860 | biostudies-literature
| S-EPMC1868832 | biostudies-literature