Unknown

Dataset Information

0

Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination.


ABSTRACT: Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.

SUBMITTER: Selvaraj P 

PROVIDER: S-EPMC7449459 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination.

Selvaraj Prashanth P   Wenger Edward A EA   Bridenbecker Daniel D   Windbichler Nikolai N   Russell Jonathan R JR   Gerardin Jaline J   Bever Caitlin A CA   Nikolov Milen M  

PLoS computational biology 20200814 8


Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector con  ...[more]

Similar Datasets

| S-EPMC7783189 | biostudies-literature
| S-EPMC8403392 | biostudies-literature
| S-EPMC6516806 | biostudies-literature
| S-EPMC3900379 | biostudies-literature
| S-EPMC6326232 | biostudies-literature
| S-EPMC4357799 | biostudies-other
| S-EPMC10239179 | biostudies-literature
| S-EPMC4751525 | biostudies-literature
| S-EPMC9732330 | biostudies-literature
| S-EPMC6323828 | biostudies-other