Unknown

Dataset Information

0

Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease.


ABSTRACT: Intracellular oxidative stress and oxidative modification of sickle hemoglobin (HbS) play a role in sickle cell disease (SCD) pathogenesis. Recently, we reported that Hb-dependent oxidative stress induced post-translational modifications (PTMs) of Hb and red blood cell (RBC) membrane proteins of transgenic SCD mice. To identify the mechanistic basis of these protein modifications, we followed in vitro oxidative changes occurring in intracellular Hb obtained from RBCs and RBC-derived microparticles (MPs) from the blood of 23 SCD patients (HbSS) of which 11 were on, and 12, off hydroxyurea (HU) treatment, and 5 ethnic matched controls. We used mass spectrometry-based proteomics to characterize these oxidative PTMs on a cross-sectional group of these patients (n?=?4) and a separate subgroup of patients (n?=?2) studied prior to initiation and during HU treatment. Collectively, these data indicated that band-3 and its interaction network involved in MPs formation exhibited more protein phosphorylation and ubiquitination in SCD patients than in controls. HU treatment reversed these oxidative PTMs back to level observed in controls. These PTMs were also confirmed using orthogonal immunoprecipitation experiments. Moreover, we observed specific markers reflective of oxidative stress, including irreversible oxidation of ?Cys93 and ubiquitination of Hb ?Lys145 (and ?Lys96). Overall, these studies strongly suggest that extensive erythrocyte membrane protein phosphorylation and ubiquitination are involved in SCD pathogenesis and provide further insight into the multifaceted effects of HU treatment.

SUBMITTER: Strader MB 

PROVIDER: S-EPMC7450072 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease.

Strader Michael Brad MB   Jana Sirsendu S   Meng Fantao F   Heaven Michael R MR   Shet Arun S AS   Thein Swee Lay SL   Alayash Abdu I AI  

Scientific reports 20200826 1


Intracellular oxidative stress and oxidative modification of sickle hemoglobin (HbS) play a role in sickle cell disease (SCD) pathogenesis. Recently, we reported that Hb-dependent oxidative stress induced post-translational modifications (PTMs) of Hb and red blood cell (RBC) membrane proteins of transgenic SCD mice. To identify the mechanistic basis of these protein modifications, we followed in vitro oxidative changes occurring in intracellular Hb obtained from RBCs and RBC-derived microparticl  ...[more]

Similar Datasets

| S-EPMC4401662 | biostudies-literature
| S-EPMC8145895 | biostudies-literature
2015-02-16 | E-GEOD-57399 | biostudies-arrayexpress
2015-02-16 | GSE57399 | GEO
| S-EPMC8191756 | biostudies-literature
| S-EPMC10310986 | biostudies-literature
| S-EPMC5387672 | biostudies-literature
| S-EPMC9675715 | biostudies-literature
| S-EPMC6030705 | biostudies-literature
| S-EPMC3903440 | biostudies-literature