Direction and magnitude of natural selection on body size differ among age-classes of seaward-migrating Pacific salmon.
Ontology highlight
ABSTRACT: Due to the mediating role of body size in determining fitness, the "bigger-is-better" hypothesis still pervades evolutionary ecology despite evidence that natural selection on phenotypic traits varies in time and space. For Pacific salmon (genus Oncorhynchus), most individual studies quantify selection across a narrow range of sizes and ages; therefore, uncertainties remain concerning how selection on size may differ among diverse life histories. Here, we quantify the direction and magnitude of natural selection on body size among age-classes of multiple marine cohorts of O. nerka (sockeye salmon). Across four cohorts of seaward migrants, we calculated standardized selection differentials by comparing observed size distributions of out-migrating juvenile salmon to back-calculated smolt length from the scales of surviving, returning adults. Results reveal the magnitude of selection on size was very strong (>90th percentile compared to a database of 3,759 linear selection differentials) and consistent among years. However, the direction of selection on size consistently varied among age-classes. Selection was positive for fish migrating to sea after two years in freshwater (age 2) and in their first year of life (age 0), but negative for fish migrating after 1 year in freshwater (age 1). The absolute magnitude of selection was negatively correlated to mean ocean-entry timing, which may underpin negative selection favoring small age-1 fish, given associations between size and timing of seaward migration. Collectively, these results indicate that "bigger is not always better" in terms of survival and emphasize trade-offs that may exist between fitness components for organisms with similarly diverse migratory life histories.
SUBMITTER: Ulaski ME
PROVIDER: S-EPMC7463379 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA