Unknown

Dataset Information

0

Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction.


ABSTRACT: CD4+ helper T cells contribute important functions to the immune response during pathogen infection and tumor formation by recognizing antigenic peptides presented by class II major histocompatibility complexes (MHC-II). While many computational algorithms for predicting peptide binding to MHC-II proteins have been reported, their performance varies greatly. Here we present a yeast-display-based platform that allows the identification of over an order of magnitude more unique MHC-II binders than comparable approaches. These peptides contain previously identified motifs, but also reveal new motifs that are validated by in vitro binding assays. Training of prediction algorithms with yeast-display library data improves the prediction of peptide-binding affinity and the identification of pathogen-associated and tumor-associated peptides. In summary, our yeast-display-based platform yields high-quality MHC-II-binding peptide datasets that can be used to improve the accuracy of MHC-II binding prediction algorithms, and potentially enhance our understanding of CD4+ T cell recognition.

SUBMITTER: Rappazzo CG 

PROVIDER: S-EPMC7473865 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3197883 | biostudies-literature
| S-EPMC3160208 | biostudies-literature
| S-EPMC2275383 | biostudies-literature
| S-EPMC6408234 | biostudies-literature
| S-EPMC2695398 | biostudies-literature
| S-EPMC3458372 | biostudies-literature
| S-EPMC3087292 | biostudies-literature
| S-EPMC8193015 | biostudies-literature
| S-EPMC4321303 | biostudies-literature
| S-EPMC9980092 | biostudies-literature