Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments.
Ontology highlight
ABSTRACT: Theoretical and experimental observations that catalysis enhances the diffusion of enzymes have generated exciting implications about nanoscale energy flow, molecular chemotaxis, and self-powered nanomachines. However, contradictory claims on the origin, magnitude, and consequence of this phenomenon continue to arise. To date, experimental observations of catalysis-enhanced enzyme diffusion have relied almost exclusively on fluorescence correlation spectroscopy (FCS), a technique that provides only indirect, ensemble-averaged measurements of diffusion behavior. Here, using an anti-Brownian electrokinetic (ABEL) trap and in-solution single-particle tracking, we show that catalysis does not increase the diffusion of alkaline phosphatase (ALP) at the single-molecule level, in sharp contrast to the ?20% enhancement seen in parallel FCS experiments using p-nitrophenyl phosphate (pNPP) as substrate. Combining comprehensive FCS controls, ABEL trap, surface-based single-molecule fluorescence, and Monte Carlo simulations, we establish that pNPP-induced dye blinking at the ?10-ms timescale is responsible for the apparent diffusion enhancement seen in FCS. Our observations urge a crucial revisit of various experimental findings and theoretical models--including those of our own--in the field, and indicate that in-solution single-particle tracking and ABEL trap are more reliable means to investigate diffusion phenomena at the nanoscale.
SUBMITTER: Chen Z
PROVIDER: S-EPMC7474647 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA