Unknown

Dataset Information

0

Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali-Silica Reaction Study.


ABSTRACT: Hybrid systems represent a new sustainable type of cement combining the properties of ordinary Portland cement and alkali-activated materials. In this study, a hybrid system based on blast furnace slag and Portland clinker was investigated. The economic aspects and appropriate waste management resulted in the usage of technological waste from water glass production (WG-waste) as an alkaline activator. Although the Portland clinker content was very low, the incorporation of this by-product significantly improved the mechanical properties. Nevertheless, the high amount of alkalis in combination with possible reactive aggregates raises concerns about the risk of alkali-silica reaction (ASR). The results obtained from expansion measurement, the uranyl acetate fluorescence method, and microstructure characterization revealed that the undesirable effects of alkali-silica reaction in mortars based on the hydration of hybrid cement are minimal.

SUBMITTER: Kalina L 

PROVIDER: S-EPMC7475897 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali-Silica Reaction Study.

Kalina Lukáš L   Bílek Vlastimil V   Bílek Vlastimil V   Bradová Lada L   Topolář Libor L  

Materials (Basel, Switzerland) 20200817 16


Hybrid systems represent a new sustainable type of cement combining the properties of ordinary Portland cement and alkali-activated materials. In this study, a hybrid system based on blast furnace slag and Portland clinker was investigated. The economic aspects and appropriate waste management resulted in the usage of technological waste from water glass production (WG-waste) as an alkaline activator. Although the Portland clinker content was very low, the incorporation of this by-product signif  ...[more]

Similar Datasets

| S-EPMC7075184 | biostudies-literature
| S-EPMC7503637 | biostudies-literature
| S-EPMC7070540 | biostudies-literature
| S-EPMC6117706 | biostudies-literature
| S-EPMC9025607 | biostudies-literature
| S-EPMC5510727 | biostudies-other
| S-EPMC5456857 | biostudies-other
| S-EPMC5458818 | biostudies-other
| S-EPMC5512523 | biostudies-other
| S-EPMC7761200 | biostudies-literature