Project description:Lysyl oxidase-like 2 (LOXL2) and 3 (LOXL3) are members of the lysyl oxidase family of enzymes involved in the maturation of the extracellular matrix. Both enzymes share a highly conserved catalytic domain, but it is unclear whether they perform redundant functions in vivo. In this study, we show that mice lacking Loxl3 exhibit perinatal lethality and abnormal skeletal development. Additionally, analysis of the genotype of embryos carrying double knockout of Loxl2 and Loxl3 genes suggests that both enzymes have overlapping functions during mouse development. Furthermore, we also show that ubiquitous expression of Loxl2 suppresses the lethality associated with Loxl3 knockout mice.
Project description:The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. These studies demonstrated that individual HDACs control non-identical but overlapping cellular processes associated with virulence, including thermotolerance, capsule formation, melanin synthesis, protease activity and cell wall integrity. We also determined the HDAC genes necessary for C. neoformans survival during in vitro macrophage infection and in animal models of cryptococcosis. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. Finally, a global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.
Project description:Glycosaminoglycans (GAGs) bind a large array of proteins and mediate fundamental and diverse roles in human physiology. Ion pair interactions between protein lysines/arginines and GAG sulfates/carboxylates mediate binding. Neutrophil-activating chemokines (NAC) are GAG-binding proteins, and their sequences reveal high selectivity for lysines over arginines indicating they are functionally not equivalent. NAC binding to GAGs impacts gradient formation, receptor functions, and endothelial activation, which together regulate different components of neutrophil migration. We characterized the consequence of mutating lysine to arginine in NAC CXCL8, a well-characterized GAG-binding protein. We chose three lysines - two highly conserved lysines (K20 and K64) and a CXCL8-specific lysine (K67). Interestingly, the double K64R/K20R and K64R/K67R mutants are highly impaired in recruiting neutrophils in a mouse model. Further, both the mutants bind GAG heparin with higher affinity but show similar receptor activity. NMR and MD studies indicate that the structures are essentially identical to the WT, but the mutations alter the network of intramolecular ion pair interactions. These observations collectively indicate that the reduced in vivo recruitment is due to altered GAG interactions, higher GAG binding affinity can be detrimental, and specificity of lysines fine-tunes in vivo GAG interactions and function.
Project description:Community-acquired urinary tract infections (UTIs) are commonly caused by uropathogenic Escherichia coli (UPEC). We hypothesize that chemotaxis toward ligands present in urine could direct UPEC into and up the urinary tract. Wild-type E. coli CFT073 and chemoreceptor mutants with tsr, tar, or aer deletions were tested for chemotaxis toward human urine in the capillary tube assay. Wild-type CFT073 was attracted toward urine, and Tsr and Tar were the chemoreceptors mainly responsible for mediating this response. The individual components of urine including L-amino acids, D-amino acids and various organic compounds were also tested in the capillary assay with wild-type CFT073. Our results indicate that CFT073 is attracted toward some L- amino acids and possibly toward some D-amino acids but not other common compounds found in urine such as urea, creatinine and glucuronic acid. In the murine model of UTI, the loss of any two chemoreceptors did not affect the ability of the bacteria to compete with the wild-type strain. Our data suggest that the presence of any strong attractant and its associated chemoreceptor might be sufficient for colonization of the urinary tract and that amino acids are the main chemoattractants for E. coli strain CFT073 in this niche.
Project description:Canonical Wnt (cWnt) signalling is involved in a plethora of basic developmental processes such as endomesoderm specification, gastrulation and patterning the main body axis. To activate the signal, Wnt ligands form complexes with LRP5/6 and Frizzled receptors, which leads to nuclear translocation of β-catenin and a transcriptional response. In Bilateria, the expression of different Frizzled genes is often partially overlapping, and their functions are known to be redundant in several developmental contexts. Here, we demonstrate that all four Frizzled receptors take part in the cWnt-mediated oral-aboral axis patterning in the cnidarian Nematostella vectensis but show partially redundant functions. However, we do not see evidence for their involvement in the specification of the endoderm - an earlier event likely relying on maternal intracellular β-catenin signalling components. Finally, we demonstrate that the main Wnt ligands crucial for the early oral-aboral patterning are Wnt1, Wnt3 and Wnt4. Comparison of our data with knowledge from other models suggests that distinct but overlapping expression domains and partial functional redundancy of cnidarian and bilaterian Frizzled genes may represent a shared ancestral trait.
Project description:Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. However, we previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. Furthermore, Plexin-B2 contributes to GABAergic synapse formation as well but is not required for GABAergic synapse formation induced by binding to Sema4D. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor that are required for its synaptogenic function. We also provide evidence that Plexin-B2 expression in presynaptic parvalbumin-positive interneurons is required for formation of GABAergic synapses onto excitatory pyramidal neurons in CA1. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie these functional distinctions. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.
Project description:Our previous study on CBP60g, a calmodulin binding protein that is important for disease resistance and microbe-associated molecular pattern (MAMP)-induced SA accumulation, led to our discovery of a closely related family member CBP60h. CBP60h is also important for defense against P. syringae but is induced differently by pathogen and MAMP stimulus. Transcriptome profiling of cbp60h mutants suggested that CBP60h might be primarily functioning in response against P. syringae. We constructed a double mutant of cbp60g and cbp60h, which demonstrated severely defective defense against P. syringae and SA accumulation. Profiling of the cbp60g/h showed that its expression pattern is very similar to that of pad4. Transient expression in Tobacco showed that both CBP60g and CBP60h localized to nucleus. Our observation suggest that CBP60g and CBP60h share partially redundant but critical role in defense response and SA signaling. This experiment consists of three biological replicates. For each genotype, two leaves per plant were pooled from three pots to prepare total RNA.
Project description:The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. A global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.