Unknown

Dataset Information

0

Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA.


ABSTRACT: It is imperative to advance our understanding of heterogeneities in the transmission of SARS-CoV-2 such as age-specific infectiousness and superspreading. To this end, it is important to exploit multiple data streams that are becoming abundantly available during the pandemic. In this paper, we formulate an individual-level spatiotemporal mechanistic framework to integrate individual surveillance data with geolocation data and aggregate mobility data, enabling a more granular understanding of the transmission dynamics of SARS-CoV-2. We analyze reported cases, between March and early May 2020, in five (urban and rural) counties in the state of Georgia. First, our results show that the reproductive number reduced to below one in about 2 wk after the shelter-in-place order. Superspreading appears to be widespread across space and time, and it may have a particularly important role in driving the outbreak in rural areas and an increasing importance toward later stages of outbreaks in both urban and rural settings. Overall, about 2% of cases were directly responsible for 20% of all infections. We estimate that the infected nonelderly cases (<60 y) may be 2.78 [2.10, 4.22] times more infectious than the elderly, and the former tend to be the main driver of superspreading. Our results improve our understanding of the natural history and transmission dynamics of SARS-CoV-2. More importantly, we reveal the roles of age-specific infectiousness and characterize systematic variations and associated risk factors of superspreading. These have important implications for the planning of relaxing social distancing and, more generally, designing optimal control measures.

SUBMITTER: Lau MSY 

PROVIDER: S-EPMC7486752 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA.

Lau Max S Y MSY   Grenfell Bryan B   Thomas Michael M   Bryan Michael M   Nelson Kristin K   Lopman Ben B  

Proceedings of the National Academy of Sciences of the United States of America 20200820 36


It is imperative to advance our understanding of heterogeneities in the transmission of SARS-CoV-2 such as age-specific infectiousness and superspreading. To this end, it is important to exploit multiple data streams that are becoming abundantly available during the pandemic. In this paper, we formulate an individual-level spatiotemporal mechanistic framework to integrate individual surveillance data with geolocation data and aggregate mobility data, enabling a more granular understanding of the  ...[more]

Similar Datasets

| S-EPMC7993775 | biostudies-literature
| S-EPMC7743081 | biostudies-literature
| S-EPMC7685463 | biostudies-literature
| S-EPMC7158947 | biostudies-literature
| S-EPMC7857414 | biostudies-literature
| S-EPMC7588535 | biostudies-literature
| S-EPMC7857412 | biostudies-literature
| S-EPMC9991055 | biostudies-literature
| S-EPMC7706962 | biostudies-literature
| S-EPMC7537089 | biostudies-literature