Unknown

Dataset Information

0

A single-cell transcriptional roadmap for cardiopharyngeal fate diversification.


ABSTRACT: In vertebrates, multipotent progenitors located in the pharyngeal mesoderm form cardiomyocytes and branchiomeric head muscles, but the dynamic gene expression programmes and mechanisms underlying cardiopharyngeal multipotency and heart versus head muscle fate choices remain elusive. Here, we used single-cell genomics in the simple chordate model Ciona to reconstruct developmental trajectories forming first and second heart lineages and pharyngeal muscle precursors and characterize the molecular underpinnings of cardiopharyngeal fate choices. We show that FGF-MAPK signalling maintains multipotency and promotes the pharyngeal muscle fate, whereas signal termination permits the deployment of a pan-cardiac programme, shared by the first and second heart lineages, to define heart identity. In the second heart lineage, a Tbx1/10-Dach pathway actively suppresses the first heart lineage programme, conditioning later cell diversity in the beating heart. Finally, cross-species comparisons between Ciona and the mouse evoke the deep evolutionary origins of cardiopharyngeal networks in chordates.

SUBMITTER: Wang W 

PROVIDER: S-EPMC7491489 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A single-cell transcriptional roadmap for cardiopharyngeal fate diversification.

Wang Wei W   Niu Xiang X   Stuart Tim T   Jullian Estelle E   Mauck William M WM   Kelly Robert G RG   Satija Rahul R   Christiaen Lionel L  

Nature cell biology 20190603 6


In vertebrates, multipotent progenitors located in the pharyngeal mesoderm form cardiomyocytes and branchiomeric head muscles, but the dynamic gene expression programmes and mechanisms underlying cardiopharyngeal multipotency and heart versus head muscle fate choices remain elusive. Here, we used single-cell genomics in the simple chordate model Ciona to reconstruct developmental trajectories forming first and second heart lineages and pharyngeal muscle precursors and characterize the molecular  ...[more]

Similar Datasets

2017-06-15 | GSE99846 | GEO
2017-06-15 | GSE99844 | GEO
| PRJNA389784 | ENA
| S-EPMC6952182 | biostudies-literature
| S-EPMC7204639 | biostudies-literature
| S-EPMC5725498 | biostudies-literature
| S-EPMC5554778 | biostudies-literature
| S-EPMC3756741 | biostudies-literature
| S-EPMC11347709 | biostudies-literature
| S-EPMC10724060 | biostudies-literature