The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors.
Ontology highlight
ABSTRACT: Plant pathogens use effector proteins to promote host colonisation. The mode of action of effectors from root-invading pathogens, such as Fusarium oxysporum (Fo), is poorly understood. Here, we investigated whether Fo effectors suppress pattern-triggered immunity (PTI), and whether they enter host cells during infection. Eight candidate effectors of an Arabidopsis-infecting Fo strain were expressed with and without signal peptide for secretion in Nicotiana benthamiana and their effect on flg22-triggered and chitin-triggered reactive oxidative species (ROS) burst was monitored. To detect uptake, effector biotinylation by an intracellular Arabidopsis-produced biotin ligase was examined following root infection. Four effectors suppressed PTI signalling; two acted intracellularly and two apoplastically. Heterologous expression of a PTI-suppressing effector in Arabidopsis enhanced bacterial susceptibility. Consistent with an intracellular activity, host cell uptake of five effectors, but not of the apoplastically acting ones, was detected in Fo-infected Arabidopsis roots. Multiple Fo effectors targeted PTI signalling, uncovering a surprising overlap in infection strategies between foliar and root pathogens. Extracellular targeting of flg22 signalling by a microbial effector provides a new mechanism on how plant pathogens manipulate their host. Effector translocation appears independent of protein size, charge, presence of conserved motifs or the promoter driving its expression.
SUBMITTER: Tintor N
PROVIDER: S-EPMC7496899 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA