Project description:Developmental dyslexia is one of the most prevalent learning disabilities, thought to be associated with dysfunction in the neural systems underlying typical reading acquisition. Neuroimaging research has shown that readers with dyslexia exhibit regional hypoactivation in left hemisphere reading nodes, relative to control counterparts. This evidence, however, comes from studies that have focused only on isolated aspects of reading. The present study aims to characterize left hemisphere regional hypoactivation in readers with dyslexia for the main processes involved in successful reading: phonological, orthographic and semantic. Forty-one participants performed a demanding reading task during MRI scanning. Results showed that readers with dyslexia exhibited hypoactivation associated with phonological processing in parietal regions; with orthographic processing in parietal regions, Broca's area, ventral occipitotemporal cortex and thalamus; and with semantic processing in angular gyrus and hippocampus. Stronger functional connectivity was observed for readers with dyslexia than for control readers 1) between the thalamus and the inferior parietal cortex/ventral occipitotemporal cortex during pseudoword reading; and, 2) between the hippocampus and the pars opercularis during word reading. These findings constitute the strongest evidence to date for the interplay between regional hypoactivation and functional connectivity in the main processes supporting reading in dyslexia.
Project description:Prior research has mostly focused on either basic language or basic cognitive precursors of reading development, but relatively little is known about their relative importance for reading, especially for Chinese beginning readers. The present study examined whether and how basic cognitive processing (executive function, attention, and visual-spatial perception) and basic language processing (phonological awareness, morphological awareness, orthographic awareness, and RAN) measured at kindergarten influence Chinese character reading and reading comprehension in the first grade. Results showed that basic language abilities including morphological awareness and rapid automatized naming predicted later Chinese character reading. Only one basic cognitive skill, sustained attention, predicted later reading comprehension. Mediation analysis showed that the overall effects of basic cognitive skills on later character reading and reading comprehension were mediated by basic language skills. These findings supported an integration reading model for early Chinese reading and basic language processing at kindergarten plays an important role in explaining the relation between basic cognitive processing and grade one reading performance.
Project description:Behavioral research shows that children's phonological ability is strongly associated with better word reading skills, whereas semantic knowledge is strongly related to better reading comprehension. However, most neuroscience research has investigated how brain activation during phonological and semantic processing is related to word reading skill. This study examines if connectivity during phonological processing in the dorsal inferior frontal gyrus (dIFG) to posterior superior temporal gyrus (pSTG) pathway is related to word reading skill, whereas connectivity during semantic processing in the ventral inferior frontal gyrus (vIFG) to posterior middle temporal gyrus (pMTG) pathway is related to reading comprehension skill. We used behavioral and functional magnetic resonance imaging (fMRI) data from a publicly accessible dataset on OpenNeuro.org. The research hypotheses and analytical plan were pre-registered on the Open Science Framework. Forty-six children ages 8-15 years old were included in the final analyses. Participants completed an in-scanner reading task tapping into phonology (i.e., word rhyming) and semantics (i.e., word meaning) as well as standardized measures of word reading and reading comprehension skill. In a series of registered and exploratory analyses, we correlated connectivity coefficients from generalized psychophysiological interactions (gPPI) with behavioral measures and used z-scores to test the equality of two correlation coefficients. Results from the preregistered and exploratory analyses indicated weak evidence that functional connectivity of dIFG to pSTG during phonological processing is positively correlated with better word reading skill, but no evidence that connectivity in the vIFG-pMTG pathway during semantic processing is related to better reading comprehension skill. Moreover, there was no evidence to support the differentiation between the dorsal pathway's relation to word reading and the ventral pathway's relation to reading comprehension skills. Our finding suggesting the importance of phonological processing to word reading is in line with prior behavioral and neurodevelopmental models.
Project description:Evidence shows that skilled readers extract information about upcoming words in the parafovea. Using the boundary paradigm, we investigated native Arabic readers' processing of orthographic, morphological, and semantic information available parafoveally. Target words were embedded in frame sentences, and prior to readers fixating them, one of the following previews were made available: (a) Identity preview; (b) Preview that shared the pattern morpheme with the target; (c) Preview that shared the root morpheme with the target; (d) Preview that was a synonym with the target word; (e) Preview with two of the root letters were transposed thus creating a new root, while preserving all letter identities of the target; (f) Preview with two of the root letters were transposed thus creating a pronounceable pseudo root, while also preserving all letter identities of the target; and (g) Previews that was unrelated to the target word and shared no information with it. The results showed that identity, root-preserving, and synonymous preview conditions yielded preview benefit. On the other hand, no benefit was obtained from the pattern-preserving previews, and significant disruption to processing was obtained from the previews that contained transposed root letters, particularly when this letter transposition created a new real root. The results thus reflect Arabic readers' dependance on morphological and semantic information, and suggest that these levels of representation are accessed as early as orthographic information. Implications for theory- and model-building, and the need to accommodate early morphological and semantic processing activities in more comprehensive models are further discussed.
Project description:Research on Japanese reading has generally indicated that processing of the logographic script Kanji primarily involves whole-word lexical processing and follows a semantics-to-phonology route, while the two phonological scripts Hiragana and Katakana (collectively called Kana) are processed via a sub-lexical route, and more in a phonology-to-semantics manner. Therefore, switching between the two scripts often involves switching between two reading processes, which results in a delayed response for the second script (a script switch cost). In the present study, participants responded to pairs of words that were written either in the same orthography (within-script), or in two different Japanese orthographies (cross-script), switching either between Kanji and Hiragana, or between Katakana and Hiragana. They were asked to read the words aloud (Experiments 1 and 3) and to make a semantic decision about them (Experiments 2 and 4). In contrast to initial predictions, a clear switch cost was observed when participants switched between the two Kana scripts, while script switch costs were less consistent when participants switched between Kanji and Hiragana. This indicates that there are distinct processes involved in reading of the two types of Kana, where Hiragana reading appears to bear some similarities to Kanji processing. This suggests that the role of semantic processing in Hiragana (but not Katakana) reading is more prominent than previously thought and thus, Hiragana is not likely to be processed strictly phonologically.
Project description:Cognitive and neuroimaging evidence suggests that episodic and semantic memory-memory for autobiographical events and conceptual knowledge, respectively-support different aspects of creative thinking, with a growing number of studies reporting activation of brain regions within the default network during performance on creative thinking tasks. The present research sought to dissociate neural contributions of these memory processes by inducing episodic or semantic retrieval orientations prior to performance on a divergent thinking task during fMRI. We conducted a representational similarity analysis (RSA) to identify multivoxel patterns of neural activity that were similar across induction (episodic and semantic) and idea generation. At the behavioral level, we found that semantic induction was associated with increased idea originality, assessed via computational estimates of semantic distance between concepts. RSA revealed that multivoxel patterns during semantic induction and subsequent idea generation were more similar (compared to episodic induction) within the left angular gyrus (AG), posterior cingulate cortex (PCC), and left anterior inferior parietal lobe (IPL). Conversely, activity patterns during episodic induction and subsequent generation were more similar within left parahippocampal gyrus and right anterior IPL. Together, the findings point to dissociable contributions of episodic and semantic memory processes to creative cognition and suggest that distinct regions within the default network support specific memory-related processes during divergent thinking.
Project description:Cerebellar networks have traditionally been linked to sensorimotor control. However, a large body of evidence suggests that cerebellar functions extend to non-motor realms, such as fear-based emotional processing and that these functions are supported by interactions with a wide range of brain structures. Research related to the cerebellar contributions to emotional processing has focussed primarily on the use of well-constrained conditioning paradigms in both human and non-human subjects. From these studies, cerebellar circuits appear to be critically involved in both conditioned and unconditioned responses to threatening stimuli in addition to encoding and storage of fear memory. It has been hypothesised that the computational mechanism underlying this contribution may involve internal models, where errors between actual and expected outcomes are computed within the circuitry of the cerebellum. From a clinical perspective, cerebellar abnormalities have been consistently linked to neurodevelopmental disorders, including autism. Importantly, atypical adaptive behaviour and heightened anxiety are also common amongst autistic individuals. In this review, we provide an overview of the current anatomical, physiological and theoretical understanding of cerebellar contributions to fear-based emotional processing to foster further insights into the neural circuitry underlying emotional dysregulation observed in people with autism.
Project description:While the publication of Linked Data has become increasingly common, the process tends to be a relatively complicated and heavy-weight one. Linked Data is typically published by centralized entities in the form of larger dataset releases, which has the downside that there is a central bottleneck in the form of the organization or individual responsible for the releases. Moreover, certain kinds of data entries, in particular those with subjective or original content, currently do not fit into any existing dataset and are therefore more difficult to publish. To address these problems, we present here an approach to use nanopublications and a decentralized network of services to allow users to directly publish small Linked Data statements through a simple and user-friendly interface, called Nanobench, powered by semantic templates that are themselves published as nanopublications. The published nanopublications are cryptographically verifiable and can be queried through a redundant and decentralized network of services, based on the grlc API generator and a new quad extension of Triple Pattern Fragments. We show here that these two kinds of services are complementary and together allow us to query nanopublications in a reliable and efficient manner. We also show that Nanobench makes it indeed very easy for users to publish Linked Data statements, even for those who have no prior experience in Linked Data publishing.
Project description:There is a growing recognition that individuals at clinical high risk need intervention for functional impairments, along with emerging psychosis, as the majority of clinical high risk (CHR) individuals show persistent deficits in social and role functioning regardless of transition to psychosis. Recent studies have demonstrated reduced reading ability as a potential cause of functional disability in schizophrenia, related to underlying deficits in generation of mismatch negativity (MMN). The present study extends these findings to subjects at CHR.The sample consisted of 34 CHR individuals and 33 healthy comparison subjects (CNTLs) from the Recognition and Prevention (RAP) Program at the Zucker Hillside Hospital in New York. At baseline, reading measures were collected, along with MMN to pitch, duration, and intensity deviants, and measures of neurocognition, and social and role (academic/work) functioning.CHR subjects showed impairments in reading ability, neurocognition, and MMN generation, relative to CNTLs. Lower-amplitude MMN responses were correlated with worse reading ability, slower processing speed, and poorer social and role functioning. However, when entered into a simultaneous regression, only reduced responses to deviance in sound duration and volume predicted poor social and role functioning, respectively.Deficits in reading ability exist even prior to illness onset in schizophrenia and may represent a decline in performance from prior abilities. As in schizophrenia, deficits are related to impaired MMN generation, suggesting specific contributions of sensory-level impairment to neurocognitive processes related to social and role function.
Project description:Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120-175?ms, 230-265?ms, 345-380?ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants' reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155-220?ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text.