Glow Discharge Plasma Treatment on Zirconia Surface to Enhance Osteoblastic-Like Cell Differentiation and Antimicrobial Effects.
Ontology highlight
ABSTRACT: Peri-implantitis is the pathological condition of connective tissue inflammation and the progressive loss of supporting bone around dental implants. One of the primary causes of peri mucositis evolving into peri-implantitis is bacterial infection, including infection from Porphyromonas gingivalis. Enhancing the surface smoothness of implants helps to prevent P. gingivalis adhesion to the implant's surface. Interaction analyses between bacteria and the surface roughness of zirconia (Zr) discs subjected to a glow discharge plasma (GDP) treatment compared with non-plasma-treated autoclaved control Zr discs were done. Examinations of the material prosperities revealed that the GDP-treated Zr group had a smoother surface for a better wettability. The GDP-treated Zr discs improved the proliferation of the osteoblast-like cells MG-63, and the osteoblastic differentiation was assessed through alkaline phosphatase detection and marker gene bone sialoprotein (Bsp) and osteocalcin (OC) induction. Scanning electron microscopy demonstrated a relatively low P. gingivalis adhesion on GDP-treated Zr disks, as well as lower colonization of P. gingivalis compared with the control. Our findings confirmed that the GDP treatment of Zr discs resulted in a significant reduction of P. gingivalis adhesion and growth, demonstrating a positive correlation between surface roughness and bacteria adhesion. Therefore, the GDP treatment of Zr dental implants can provide a method for reducing the risk of peri-implantitis.
SUBMITTER: Pan YH
PROVIDER: S-EPMC7503232 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA