On a Key-Based Secured Audio Data-Hiding Scheme Robust to Volumetric Attack with Entropy-Based Embedding
Ontology highlight
ABSTRACT: In the data-hiding field, it is mandatory that proposed schemes are key-secured as required by the Kerckhoff’s principle. Moreover, perceptual transparency must be guaranteed. On the other hand, volumetric attack is of special interest in audio data-hiding systems. This study proposes a data-hiding scheme for audio signals, which is both key-based secured and highly perceptually transparent and, thus, robust to the volumetric attack. A modification to a state-of-the-art data-hiding algorithm is proposed to achieve key-based security. Embedding is carried out in the integer discrete cosine transform (DCT) domain; selected samples for embedding are determined by the entropy of the Integer DCT coefficients. Of the two key-based improvements proposed, the multiplicative strategy gives better results, guaranteeing the worst bit error rate when an incorrect key is used. Additionally, the perceptual transparency of the proposed scheme is higher, compared to the state-of-the-art schemes using similar embedding strategies.
SUBMITTER: Garcia-Hernandez J
PROVIDER: S-EPMC7514328 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA