Unknown

Dataset Information

0

Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling.


ABSTRACT: Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.

SUBMITTER: Warren EC 

PROVIDER: S-EPMC7519326 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling.

Warren Eleanor C EC   Dooves Stephanie S   Lugarà Eleonora E   Damstra-Oddy Joseph J   Schaf Judith J   Heine Vivi M VM   Walker Mathew C MC   Williams Robin S B RSB  

Proceedings of the National Academy of Sciences of the United States of America 20200902 38


Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, <i>Dictyostelium</i>, we show that decanoic acid can decrease mTOR  ...[more]

Similar Datasets

| S-EPMC6121119 | biostudies-literature
| S-EPMC3545208 | biostudies-literature
| S-EPMC4151208 | biostudies-literature
| S-EPMC4695176 | biostudies-literature
| S-EPMC3325026 | biostudies-literature
| S-EPMC9314339 | biostudies-literature
2022-07-22 | PXD035076 | Pride
| S-EPMC7600478 | biostudies-literature
| S-EPMC9917118 | biostudies-literature
| S-EPMC9667991 | biostudies-literature