Tracking the Influence of Predictive Cues on the Evaluation of Food Images: Volatility Enables Nudging.
Ontology highlight
ABSTRACT: In previous research on the evaluation of food images, we found that appetitive food images were rated higher following a positive prediction than following a negative prediction, and vice versa for aversive food images. The findings suggested an active confirmation bias. Here, we examine whether this influence from prediction depends on the evaluative polarization of the food images. Specifically, we divided the set of food images into "strong" and "mild" images by how polarized (i.e., extreme) their average ratings were across all conditions. With respect to the influence from prediction, we raise two alternative hypotheses. According to a predictive dissonance hypothesis, the larger the discrepancy between prediction and outcome, the stronger the active inference toward accommodating the outcome with the prediction; thus, the confirmation bias should obtain particularly with strong images. Conversely, according to a nudging-in-volatility hypothesis, the active confirmation bias operates only on images within a dynamic range, where the values of images are volatile, and not on the evaluation of images that are too obviously appetitive or aversive; accordingly, the effects from prediction should occur predominately with mild images. Across the data from two experiments, we found that the evaluation of mild images tended to exhibit the confirmation bias, with ratings that followed the direction given by the prediction. For strong images, there was no confirmation bias. Our findings corroborate the nudging-in-volatility hypothesis, suggesting that predictive cues may be able to tip the balance of evaluation particularly for food images that do not have a strongly polarized value.
SUBMITTER: Ounjai K
PROVIDER: S-EPMC7522349 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA