Unknown

Dataset Information

0

BCrystal: an interpretable sequence-based protein crystallization predictor.


ABSTRACT: MOTIVATION:X-ray crystallography has facilitated the majority of protein structures determined to date. Sequence-based predictors that can accurately estimate protein crystallization propensities would be highly beneficial to overcome the high expenditure, large attrition rate, and to reduce the trial-and-error settings required for crystallization. RESULTS:In this study, we present a novel model, BCrystal, which uses an optimized gradient boosting machine (XGBoost) on sequence, structural and physio-chemical features extracted from the proteins of interest. BCrystal also provides explanations, highlighting the most important features for the predicted crystallization propensity of an individual protein using the SHAP algorithm. On three independent test sets, BCrystal outperforms state-of-the-art sequence-based methods by more than 12.5% in accuracy, 18% in recall and 0.253 in Matthew's correlation coefficient, with an average accuracy of 93.7%, recall of 96.63% and Matthew's correlation coefficient of 0.868. For relative solvent accessibility of exposed residues, we observed higher values to associate positively with protein crystallizability and the number of disordered regions, fraction of coils and tripeptide stretches that contain multiple histidines associate negatively with crystallizability. The higher accuracy of BCrystal enables it to accurately screen for sequence variants with enhanced crystallizability. AVAILABILITY AND IMPLEMENTATION:Our BCrystal webserver is at https://machinelearning-protein.qcri.org/ and source code is available at https://github.com/raghvendra5688/BCrystal. SUPPLEMENTARY INFORMATION:Supplementary data are available at Bioinformatics online.

SUBMITTER: Elbasir A 

PROVIDER: S-EPMC7523644 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

BCrystal: an interpretable sequence-based protein crystallization predictor.

Elbasir Abdurrahman A   Mall Raghvendra R   Kunji Khalid K   Rawi Reda R   Islam Zeyaul Z   Chuang Gwo-Yu GY   Kolatkar Prasanna R PR   Bensmail Halima H  

Bioinformatics (Oxford, England) 20200301 5


<h4>Motivation</h4>X-ray crystallography has facilitated the majority of protein structures determined to date. Sequence-based predictors that can accurately estimate protein crystallization propensities would be highly beneficial to overcome the high expenditure, large attrition rate, and to reduce the trial-and-error settings required for crystallization.<h4>Results</h4>In this study, we present a novel model, BCrystal, which uses an optimized gradient boosting machine (XGBoost) on sequence, s  ...[more]

Similar Datasets

| S-EPMC3117383 | biostudies-literature
| S-EPMC9258900 | biostudies-literature
| S-EPMC3366497 | biostudies-literature
| S-EPMC9474292 | biostudies-literature
| S-EPMC3645958 | biostudies-literature
| S-EPMC2703882 | biostudies-literature
| S-EPMC4820270 | biostudies-literature
| S-EPMC5860208 | biostudies-literature
| S-EPMC4613249 | biostudies-literature
| S-EPMC7541839 | biostudies-literature