Unknown

Dataset Information

0

Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression.


ABSTRACT: Skeletal homeostasis is sensitive to perturbations in Wnt signaling. Beyond its role in the bone, Wnt is a major target for pharmaceutical inhibition in a wide range of diseases, most notably cancers. Numerous clinical trials for Wnt-based candidates are currently underway, and Wnt inhibitors will likely soon be approved for clinical use. Given the bone-suppressive effects accompanying Wnt inhibition, there is a need to expose alternate pathways/molecules that can be targeted to counter the deleterious effects of Wnt inhibition on bone properties. Activation of the Pi3k/Akt pathway via Pten deletion is one possible osteoanabolic pathway to exploit. We investigated whether the osteopenic effects of β-catenin deletion from bone cells could be rescued by Pten deletion in the same cells. Mice carrying floxed alleles for Pten and β-catenin were bred to Dmp1-Cre mice to delete Pten alone, β-catenin alone, or both genes from the late-stage osteoblast/osteocyte population. The mice were assessed for bone mass, density, strength, and formation parameters to evaluate the potential rescue effect of Pten deletion in Wnt-impaired mice. Pten deletion resulted in high bone mass and β-catenin deletion resulted in low bone mass. Compound mutants had bone properties similar to β-catenin mutant mice, or surprisingly in some assays, were further compromised beyond β-catenin mutants. Pten inhibition, or one of its downstream nodes, is unlikely to protect against the bone-wasting effects of Wnt/βcat inhibition. Other avenues for preserving bone mass in the presence of Wnt inhibition should be explored to alleviate the skeletal side effects of Wnt inhibitor-based therapies.

SUBMITTER: Lim KE 

PROVIDER: S-EPMC7529875 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4899196 | biostudies-literature
| S-EPMC4767937 | biostudies-literature
| S-EPMC6500763 | biostudies-literature
| S-EPMC8506028 | biostudies-literature
| S-EPMC4170153 | biostudies-literature
| S-EPMC5428476 | biostudies-literature
| S-EPMC2082644 | biostudies-literature
| S-EPMC5467017 | biostudies-literature
| S-EPMC7171049 | biostudies-literature
| S-EPMC1483165 | biostudies-literature