Unknown

Dataset Information

0

Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.


ABSTRACT: Coronavirus causes a disease with high infectivity and pathogenicity, especially SARS in 2003, MERS in 2012, and COVID-2019 currently. The spike proteins of these coronaviruses are critical for host cell entry by receptors. Thus, searching for broad-spectrum anti-coronavirus candidates, such as spike protein inhibitors, is vital and desirable due to the mutations in the spike protein. In this study, a combination of computer-aided drug design and biological verification was used to discover active monomers from traditional Chinese medicine. Surface plasmon resonance (SPR) assays and NanoBit assays were used to verify the predicated compounds with their binding activities to spike proteins and inhibitory activities on the SARS-CoV-2 RBD/ACE2 interaction, respectively. Furthermore, an MTT assay was used to evaluate the cell toxicities of active compounds. As a result, glycyrrhizic acid (ZZY-44) was found to be the most efficient and nontoxic broad-spectrum anti-coronavirus molecule in vitro, especially, the significant effect on SARS-CoV-2, which provided a theoretical basis for the study of the pharmacodynamic material basis of traditional Chinese medicine against SARS-CoV-2 and offered a lead compound for further structural modification in order to obtain more effective candidate drugs against SARS-CoV-2.

SUBMITTER: Yu S 

PROVIDER: S-EPMC7531286 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.

Yu Shaopeng S   Zhu Yuying Y   Xu Jiaruo J   Yao Guangtao G   Zhang Pei P   Wang Mengge M   Zhao Yongfang Y   Lin Guoqiang G   Chen Hongzhuan H   Chen Lili L   Zhang Jiange J  

Phytomedicine : international journal of phytotherapy and phytopharmacology 20201002


Coronavirus causes a disease with high infectivity and pathogenicity, especially SARS in 2003, MERS in 2012, and COVID-2019 currently. The spike proteins of these coronaviruses are critical for host cell entry by receptors. Thus, searching for broad-spectrum anti-coronavirus candidates, such as spike protein inhibitors, is vital and desirable due to the mutations in the spike protein. In this study, a combination of computer-aided drug design and biological verification was used to discover acti  ...[more]

Similar Datasets

| EMPIAR-10891 | biostudies-other
| EMPIAR-11038 | biostudies-other
| S-EPMC7470085 | biostudies-literature
| EMPIAR-10951 | biostudies-other
| EMPIAR-10952 | biostudies-other
| EMPIAR-10947 | biostudies-other
| S-EPMC7112778 | biostudies-literature
| S-EPMC8569294 | biostudies-literature
| S-EPMC7102548 | biostudies-literature
| S-SCDT-10_15252-EMBR_202357224 | biostudies-other