Project description:Recently, a new respiratory infectious disease called COVID-19 has emerged and created a global emergency. It was initially linked to the animal-to-human transmission. However, it is now thought that COVID-19 is spreading through human-to-human transmission mainly via droplets. As there is no definite antiviral therapy for the treatment of cases with COVID-19 the best option for slowing down the pandemic and reducing mortality rates is protection against the virus of interest. To achieve this goal obtaining information about how first cases infected with COVID-19 is crucial. Hence, this study aims to review the studies published in peer-reviewed journals to report the first confirmed cases with COVID-19. Herein, we review the origin, symptoms, diagnostic tests, and progress of the disease and possible actions of authorities which would be effective in similar pandemics in the future. This study reviewed 13 cases (5 females and 8 males; 25-61 years old) from 10 countries. All cases have recovered from COVID-19. The results of this review suggested that timely reports of the confirmed cases, notifying World Health Organization and providing information to the general population about the methods of spreading the virus would have decreased the number of infected cases and mortality rates. In addition, the travel history of the first confirmed cases in various countries suggested that prompt actions in restricting travels and closing borders could be an efficient strategy in preventing the transmission of the disease outside of the affected sites. Efforts should be taken by health authorities for preparing the world for future epidemic/pandemic in terms of developing advanced screening strategies in the borders and diagnostic strategies for early identification of infected cases.
Project description:BackgroundProminent clinical symptoms of COVID-19 include CNS manifestations. However, it is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, gains access to the CNS and whether it causes neuropathological changes. We investigated the brain tissue of patients who died from COVID-19 for glial responses, inflammatory changes, and the presence of SARS-CoV-2 in the CNS.MethodsIn this post-mortem case series, we investigated the neuropathological features in the brains of patients who died between March 13 and April 24, 2020, in Hamburg, Germany. Inclusion criteria comprised a positive test for SARS-CoV-2 by quantitative RT-PCR (qRT-PCR) and availability of adequate samples. We did a neuropathological workup including histological staining and immunohistochemical staining for activated astrocytes, activated microglia, and cytotoxic T lymphocytes in the olfactory bulb, basal ganglia, brainstem, and cerebellum. Additionally, we investigated the presence and localisation of SARS-CoV-2 by qRT-PCR and by immunohistochemistry in selected patients and brain regions.Findings43 patients were included in our study. Patients died in hospitals, nursing homes, or at home, and were aged between 51 years and 94 years (median 76 years [IQR 70-86]). We detected fresh territorial ischaemic lesions in six (14%) patients. 37 (86%) patients had astrogliosis in all assessed regions. Activation of microglia and infiltration by cytotoxic T lymphocytes was most pronounced in the brainstem and cerebellum, and meningeal cytotoxic T lymphocyte infiltration was seen in 34 (79%) patients. SARS-CoV-2 could be detected in the brains of 21 (53%) of 40 examined patients, with SARS-CoV-2 viral proteins found in cranial nerves originating from the lower brainstem and in isolated cells of the brainstem. The presence of SARS-CoV-2 in the CNS was not associated with the severity of neuropathological changes.InterpretationIn general, neuropathological changes in patients with COVID-19 seem to be mild, with pronounced neuroinflammatory changes in the brainstem being the most common finding. There was no evidence for CNS damage directly caused by SARS-CoV-2. The generalisability of these findings needs to be validated in future studies as the number of cases and availability of clinical data were low and no age-matched and sex-matched controls were included.FundingGerman Research Foundation, Federal State of Hamburg, EU (eRARE), German Center for Infection Research (DZIF).
Project description:We review the microbiological aspects of COVID-19 infection and present the microbiological studies that should be performed in forensic cases. We describe the taxonomic characteristics of the virus, its relationship with the coronaviridae family and its genetic structure. We briefly present the clinical and pathological characteristics of COVID-19 infection, as well as the co-infections that could be associated with this virus. In the laboratory, PCR is a first-choice technique in the acute phase of the infection, together with antigen and serological studies. Finally, we describe the main objectives of microbiological studies in the deceased in relation to the COVID-19 pandemic, as well as the main post-mortem microbiological analysis to be carried out in the medico-legal context. The microbiological analysis should aim to detect both SARS-CoV-2 and coinfections, which may also contribute to the cause of death.
Project description:(1) Background: The current outbreak of COVID-19 infection is an ongoing challenge and a major threat to public health that requires surveillance, prompt diagnosis, as well as research efforts to understand the viral pathogenesis. Despite this, to date, very few studies have been performed concerning autoptic specimens. Therefore, this study aimed: (i) to reiterate the importance of the autoptic examination, the only method able to precisely define the cause of death; (ii) to provide a complete post-mortem histological and immunohistochemical investigation pattern capable of diagnosing death from COVID-19 infection. (2) Methods: In this paper, the lung examination of two subjects who died from COVID-19 are discussed, comparing the obtained data with those of the control, a newborn who died from pneumonia in the same pandemic period. (3) Results: The results of the present study suggest that COVID-19 infection can cause different forms of acute respiratory distress syndrome (ARDS), due to diffuse alveolar damage and diffuse endothelial damage. Nevertheless, different patterns of cellular and cytokine expression are associated with anti-COVID-19 antibody positivity, compared to the control case. Moreover, in both case studies, it is interesting to note that COVID-19, ACE2 and FVIII positivity was detected in the same fields. (4) Conclusions: COVID-19 infection has been initially classified as exclusively interstitial pneumonia with varying degrees of severity. Subsequently, vascular biomarkers showed that it can also be considered a vascular disease. The data on Factor VIII discussed in this paper, although preliminary and limited in number, seem to suggest that the thrombogenicity of Sars-CoV2 infection might be linked to widespread endothelial damage. In this way, it would be very important to investigate the pro-coagulative substrate both in all subjects who died and in COVID-19 survivors. This is because it may be hypothesized that the different patterns with which the pathology is expressed could depend on different individual susceptibility to infection or a different personal genetic-clinical background. In light of these findings, it would be important to perform more post-mortem investigations in order to clarify all aspects of the vascular hypothesis in the COVID-19 infection.
Project description:Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene expression and phenotypic profile of a variety of endogenous CNS cell types (astrocytes, neurons, microglia) as well as an influx of leukocytic cells (neutrophils, macrophages, T-cells) from the periphery. Many molecules and conditions can trigger a transformation of ârestingâ (or surveying) microglia to an âactivatedâ (alerted/reactive) state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. Emphasis is placed on the role of specific molecular signaling systems such as hypoxia inducible factor-1 (HIF-1) and toll-like receptor-4 (TLR4) in regulating the microglial response in this setting. We then review histological and recent novel radiological data that confirms a key role for microglial activation in the setting of ischemic stroke in humans. We discuss recent progress in the pharmacological and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in preemptively targeting microglial activation in order to reduce stroke severity. 12 arrays, 4 experimental groups, 3 replicates in each group, CN is control normoxia, CH is control hypoxia, TN is TLR4 knockout normoxia, TH is TLR4 knockout hypoxia.
Project description:Magnetic resonance imaging (MRI) is being used to probe the central nervous system (CNS) of patients with multiple sclerosis (MS), a chronic demyelinating disease. Conventional T(2)-weighted MRI (cMRI) largely fails to predict the degree of patients' disability. This shortcoming may be due to poor specificity of cMRI for clinically relevant pathology. Diffusion tensor imaging (DTI) has shown promise to be more specific for MS pathology. In this study we investigated the association between histological indices of myelin content, axonal count and gliosis, and two measures of DTI (mean diffusivity [MD] and fractional anisotropy [FA]), in unfixed post mortem MS brain using a 1.5-T MR system. Both MD and FA were significantly lower in post mortem MS brain compared to published data acquired in vivo. However, the differences of MD and FA described in vivo between white matter lesions (WMLs) and normal-appearing white matter (NAWM) were retained in this study of post mortem brain: average MD in WMLs was 0.35x10(-3) mm(2)/s (SD, 0.09) versus 0.22 (0.04) in NAWM; FA was 0.22 (0.06) in WMLs versus 0.38 (0.13) in NAWM. Correlations were detected between myelin content (Tr(myelin)) and (i) FA (r=-0.79, p<0.001), (ii) MD (r=0.68, p<0.001), and (iii) axonal count (r=-0.81, p<0.001). Multiple regression suggested that these correlations largely explain the apparent association of axonal count with (i) FA (r=0.70, p<0.001) and (ii) MD (r=-0.66, p<0.001). In conclusion, this study suggests that FA and MD are affected by myelin content and - to a lesser degree - axonal count in post mortem MS brain.
Project description:BackgroundSudden arrhythmic death syndrome (SADS) describes a sudden death with negative autopsy and toxicological analysis. Cardiac genetic disease is a likely etiology.ObjectivesThis study investigated the clinical utility and combined yield of post-mortem genetic testing (molecular autopsy) in cases of SADS and comprehensive clinical evaluation of surviving relatives.MethodsWe evaluated 302 expertly validated SADS cases with suitable DNA (median age: 24 years; 65% males) who underwent next-generation sequencing using an extended panel of 77 primary electrical disorder and cardiomyopathy genes. Pathogenic and likely pathogenic variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. The yield of combined molecular autopsy and clinical evaluation in 82 surviving families was evaluated. A gene-level rare variant association analysis was conducted in SADS cases versus controls.ResultsA clinically actionable pathogenic or likely pathogenic variant was identified in 40 of 302 cases (13%). The main etiologies established were catecholaminergic polymorphic ventricular tachycardia and long QT syndrome (17 [6%] and 11 [4%], respectively). Gene-based rare variants association analysis showed enrichment of rare predicted deleterious variants in RYR2 (p = 5 × 10-5). Combining molecular autopsy with clinical evaluation in surviving families increased diagnostic yield from 26% to 39%.ConclusionsMolecular autopsy for electrical disorder and cardiomyopathy genes, using ACMG guidelines for variant classification, identified a modest but realistic yield in SADS. Our data highlighted the predominant role of catecholaminergic polymorphic ventricular tachycardia and long QT syndrome, especially the RYR2 gene, as well as the minimal yield from other genes. Furthermore, we showed the enhanced utility of combined clinical and genetic evaluation.
Project description:BackgroundEpigenetic (including DNA and histone) modifications occur in a variety of neurological disorders. If epigenetic features of brain autopsy material are to be studied, it is critical to understand the post-mortem stability of the modifications.MethodsPig and mouse brain tissue were formalin-fixed and paraffin-embedded, or frozen after post-mortem delays of 0, 24, 48, and 72?h. Epigenetic modifications frequently reported in the literature were studied by DNA agarose gel electrophoresis, DNA methylation enzyme-linked immunosorbent assays, Western blotting, and immunohistochemistry. We constructed a tissue microarray of human neocortex samples with devitalization or death to fixation times ranging from <?60?min to 5?days.ResultsIn pig and mouse brain tissue, we found that DNA cytosine modifications (5mC, 5hmC, 5fC, and 5caC) were stable for ??72?h post-mortem. Histone methylation was generally stable for ??48?h (H3K9me2/K9me3, H3K27me2, H3K36me3) or ??72?h post-mortem (H3K4me3, H3K27me3). Histone acetylation was generally less stable. The levels of H3K9ac, H3K27ac, H4K5ac, H4K12ac, and H4K16ac declined as early as ??24?h post-mortem, while the levels of H3K14ac did not change at ??48?h. Immunohistochemistry showed that histone acetylation loss occurred primarily in the nuclei of large neurons, while immunoreactivity in glial cell nuclei was relatively unchanged. In the human brain tissue array, immunoreactivity for DNA cytosine modifications and histone methylation was stable, while subtle changes were apparent in histone acetylation at 4 to 5?days post-mortem.ConclusionWe conclude that global epigenetic studies on human post-mortem brain tissue are feasible, but great caution is needed for selection of post-mortem delay matched controls if histone acetylation is of interest.
Project description:Every biological system interacts with the surrounding environment, both during life and after death. We investigated three concealment simulations (air exposed, water submerged, and buried) to understand how the environment can influence the post-mortem transcription to add knowledge about the biology of death and also to identify possible molecules for forensic applications. We used microarrays to detect upregulated and downregulated genes in the brains of concealed mouse (48h after death) and to identify molecular markes specifically associated to each environmental condition or the gene expression programme shared by all conditions analysed.
Project description:The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.