The architecture of co-culture spheroids regulates tumor invasion within a 3D extracellular matrix
Ontology highlight
ABSTRACT: Tumor invasion, the process by which tumor cells break away from their primary tumor and gain access to vascular systems, is an important step in cancer metastasis. Most current 3D tumor invasion assays consisted of single tumor cells embedded within an extracellular matrix (ECM). These assays taught us much of what we know today on how key biophysical (e.g. ECM stiffness) and biochemical (e.g. cytokine gradients) parameters within the tumor microenvironment guided and regulated tumor invasion. One limitation of the single tumor cell invasion assay was that it did not account for cell-cell adhesion within the tumor. In this article, we developed a micrometer scale 3D co-culture spheroid invasion assay that was compatible with microscopic imaging. Micrometer scale co-culture spheroids (1:1 ratio of metastatic breast cancer MDA-MB-231 and non-tumorigenic epithelial MCF-10A cells) were made using an array of microwells, and then were embedded within a collagen matrix in a microfluidic platform. Real time imaging of tumor spheroid invasion revealed that the spatial distribution of the two cell types within the tumor spheroid critically regulated tumor invasion. This work linked tumor architecture with tumor invasion and highlighted the importance of the biophysical cues within the bulk of the tumor in tumor invasion.
SUBMITTER: Huang Y
PROVIDER: S-EPMC7540657 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA