Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations.
Ontology highlight
ABSTRACT: BACKGROUND:Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. RESULTS:After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and?~?1% within Scandinavia. SNPs showing large divergence (FST?>?0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p?
SUBMITTER: Jansson E
PROVIDER: S-EPMC7547435 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA