Unknown

Dataset Information

0

A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI.


ABSTRACT: Computer-aided detection and diagnosis (CAD) systems have the potential to improve robustness and efficiency compared to traditional radiological reading of magnetic resonance imaging (MRI). Fully automated segmentation of the prostate is a crucial step of CAD for prostate cancer, but visual inspection is still required to detect poorly segmented cases. The aim of this work was therefore to establish a fully automated quality control (QC) system for prostate segmentation based on T2-weighted MRI. Four different deep learning-based segmentation methods were used to segment the prostate for 585 patients. First order, shape and textural radiomics features were extracted from the segmented prostate masks. A reference quality score (QS) was calculated for each automated segmentation in comparison to a manual segmentation. A least absolute shrinkage and selection operator (LASSO) was trained and optimized on a randomly assigned training dataset (N = 1756, 439 cases from each segmentation method) to build a generalizable linear regression model based on the radiomics features that best estimated the reference QS. Subsequently, the model was used to estimate the QSs for an independent testing dataset (N = 584, 146 cases from each segmentation method). The mean ± standard deviation absolute error between the estimated and reference QSs was 5.47 ± 6.33 on a scale from 0 to 100. In addition, we found a strong correlation between the estimated and reference QSs (rho = 0.70). In conclusion, we developed an automated QC system that may be helpful for evaluating the quality of automated prostate segmentations.

SUBMITTER: Sunoqrot MRS 

PROVIDER: S-EPMC7555425 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI.

Sunoqrot Mohammed R S MRS   Selnæs Kirsten M KM   Sandsmark Elise E   Nketiah Gabriel A GA   Zavala-Romero Olmo O   Stoyanova Radka R   Bathen Tone F TF   Elschot Mattijs M  

Diagnostics (Basel, Switzerland) 20200918 9


Computer-aided detection and diagnosis (CAD) systems have the potential to improve robustness and efficiency compared to traditional radiological reading of magnetic resonance imaging (MRI). Fully automated segmentation of the prostate is a crucial step of CAD for prostate cancer, but visual inspection is still required to detect poorly segmented cases. The aim of this work was therefore to establish a fully automated quality control (QC) system for prostate segmentation based on T2-weighted MRI  ...[more]

Similar Datasets

| S-EPMC8179870 | biostudies-literature
| S-EPMC9363383 | biostudies-literature
| S-EPMC7889861 | biostudies-literature
| S-EPMC2939190 | biostudies-literature
| S-EPMC8259660 | biostudies-literature
| S-EPMC10033524 | biostudies-literature
| S-EPMC6851560 | biostudies-literature
| S-EPMC6996604 | biostudies-literature
| S-EPMC8018925 | biostudies-literature
| S-EPMC7577831 | biostudies-literature