Microfluidic Encapsulation of Hydrophobic Antifouling Biocides in Calcium Alginate Hydrogels for Controllable Release.
Ontology highlight
ABSTRACT: Microencapsulation of biocides is used in long-life antifouling coating paints for marine applications and building materials. Here, we report the microfluidic production of calcium alginate (Ca-alginate) hydrogel particles to modulate the release of the encapsulated drug Irgarol (N-cyclopropyl-N'-(1,1-dimethylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), which is a hydrophobic and specifically phytotoxic antifoulant that inhibits photosystem II in aquatic plant species. We first encapsulated the drug inside the highly spherical Ca-alginate hydrogels of an average diameter ?160 ?m with a coefficient of variation of less than 4% and an average roundness of more than 0.96. The release speeds of the encapsulated and nonencapsulated drugs in pure water were measured separately by ultraviolet-visible spectroscopy. A stable and controllable release rate of the loaded drug was achieved by hydrophilic encapsulation. In addition, cellulose fibers were incorporated to enhance the mechanical strength of the hydrogels. Finally, the antifouling effect of the encapsulated drug was demonstrated using water grass (Bacopa monnieri).
SUBMITTER: Liu Y
PROVIDER: S-EPMC7557246 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA