Radio-Sensitizing Effects of CuII and ZnII Complexes of Ornidazole: Role of Nitro Radical Anion.
Ontology highlight
ABSTRACT: The treatment of malignant cells that are deficient in oxygen due to the insufficient flow of blood is often seen as a major hindrance in radiotherapy. Such cells become radio-resistant because molecular oxygen, the natural and best radio-sensitizer, is depleted. Hence, to compensate this deficiency in oxygen, there is a need for agents that enhance radiation-induced damage of cells (radio-sensitizers) in a manner that normal cells are least affected. Simultaneously, agents capable of showing activity under hypoxic conditions are known as hypoxic cytotoxins that selectively and preferably destroy cells under hypoxic environments. 5-Nitroimidazoles fit both definitions. Their efficiency is based on their ability to generate the nitro radical anion that interacts with the strands of DNA within cells, either damaging or modifying them, leading to cell death. 5-Nitroimidazoles are important radio-pharmaceuticals (radio-sensitizers) in cancer-related treatments where the nitro radical anion has an important role. Since its generation leads to neurotoxic side effects that may be controlled through metal complex formation, this study looks at the possibility of two monomeric complexes of Ornidazole [1-chloro-3-(2-methyl-5-nitro-1H-imidazole-1-yl)propan-2-ol] with CuII and ZnII to be better radio-sensitizers and/or hypoxic cytotoxins than Ornidazole. The study reveals that although there is a decrease in nitro radical anion formation by complexes, such a decrease does not hamper their radio-sensitizing ability. Nucleic acid bases (thymine, cytosine, and adenine) or calf thymus DNA used as targets were irradiated with 60Co ? rays either in the absence or presence of Ornidazole and its monomeric complexes. Radiation-induced damage of nucleic acid bases was followed by high-performance liquid chromatography (HPLC), and modification of calf thymus DNA was followed by ethidium bromide fluorescence. Studies indicate that the complexes were better in performance than Ornidazole. CuII-ornidazole was significantly better than either Ornidazole or ZnII-ornidazole, which is attributed to certain special features of the CuII complex; aspects like having a stable lower oxidation state enable it to participate in Fenton reactions that actively influence radio-sensitization and the ability of the complex to bind effectively to DNA.
SUBMITTER: Nandy P
PROVIDER: S-EPMC7557252 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA