ABSTRACT: BACKGROUND:Considering that DNA methylation (DNAm) profiles are, in large part, modifiable by lifestyle and environmental influences, it has been proposed that epigenetic clocks provide a better estimate of biological age than chronological age, as associated with current health status. Even though metabolic diseases induce precocious aging, little is known about associations between metabolic syndrome (MetS) and DNA methylation clocks, and stochastic epigenetic mutations (SEMs), in a Korean population. Therefore, we assessed four different epigenetic clocks (Pan-tissue, Hannum, PhenoAge, and GrimAge), and their accelerations, on MetS and MetS-related lifestyle factors, in Koreans. We measured genome-wide DNA methylation (485,512 CpGs), using an Illumina 450 methylation BeadChip array, with data from 349 blood samples. RESULTS:DNAm GrimAge strongly correlated with chronological age (r = 0.77, p < 0.001) compared to the other three epigenetic clocks and SEMs. DNAm-based surrogate markers, with regard to MetS, including the gene encoding plasminogen activator inhibitor-1 (PAI1), also correlated with chronological age. Within cohorts stratified by age group, sex, regional area, smoking, and alcohol drinking, a positive correlation was observed between DNAm GrimAge and chronological age (0.43 ? r ? 0.78). In particular, we identified MetS to associate with accelerated GrimAge, and age-adjusted PAI1, in the middle-age group. Accerelated GrimAge also associated with risk of MetS in the middle-age group (odds ratio = 1.16, p = 0.046), which appears to mediate their associations with fasting glucose. Multiple linear regression showed that DNAm GrimAge, and its acceleration, associate with MetS scores, in the middle-age group (r = 0.26, p = 0.006). Age-adjusted PAI1 was also significantly different between the MetS and control groups, and further associated with MetS scores (r = 0.31, P < 0.001), in the middle age group. CONCLUSION:DNAm GrimAge is a surrogate marker for MetS, and its component score, in Koreans. This association can be observed only in middle age. Therefore, appropriate DNA methylation clocks may aid in the prediction of Korean metabolic diseases.