Unknown

Dataset Information

0

Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor.


ABSTRACT: The adoptive transfer of chimeric antigen receptor-T (CAR-T) cells has shown remarkable clinical responses in hematologic malignancies. However, unsatisfactory curative results and side effects for tumor treatment are still unsolved problems. Herein we develop a click CAR-T cell engineering strategy via cell glycometabolic labeling for robustly boosting their antitumor effects and safety in vivo. Briefly, paired chemical groups (N3/BCN) are separately incorporated into CAR-T cell and tumor via nondestructive intrinsic glycometabolism of exogenous Ac4GalNAz and Ac4ManNBCN, serving as an artificial ligand-receptor. Functional groups anchored on cell surface strengthen the interaction of CAR-T cell and tumor via bioorthogonal click chemistry, further enhancing specific recognition, migration and selective antitumor effects of CAR-T cells. In vivo, click CAR-T cell completely removes lymphoma cells and minimizes off-target toxicity via selective and efficient bioorthogonal targeting in blood cancer. Surprisingly, compared to unlabeled cells, artificial bioorthogonal targeting significantly promotes the accumulation, deep penetration and homing of CAR-T cells into tumor tissues, ultimately improving its curative effect for solid tumor. Click CAR-T cell engineering robustly boosts selective recognition and antitumor capabilities of CAR T cells in vitro and in vivo, thereby holding a great potential for effective clinical cell immunotherapy with avoiding adverse events in patients.

SUBMITTER: Pan H 

PROVIDER: S-EPMC7560591 | biostudies-literature | 2021 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor.

Pan Hong H   Li Wenjun W   Chen Ze Z   Luo Yingmei Y   He Wei W   Wang Mengmeng M   Tang Xiaofan X   He Huamei H   Liu Lanlan L   Zheng Mingbin M   Jiang Xin X   Yin Ting T   Liang Ruijing R   Ma Yifan Y   Cai Lintao L  

Bioactive materials 20201009 4


The adoptive transfer of chimeric antigen receptor-T (CAR-T) cells has shown remarkable clinical responses in hematologic malignancies. However, unsatisfactory curative results and side effects for tumor treatment are still unsolved problems. Herein we develop a click CAR-T cell engineering strategy via cell glycometabolic labeling for robustly boosting their antitumor effects and safety in vivo. Briefly, paired chemical groups (N<sub>3</sub>/BCN) are separately incorporated into CAR-T cell and  ...[more]

Similar Datasets

| S-EPMC7030928 | biostudies-literature
| S-EPMC9315443 | biostudies-literature
| S-EPMC7333410 | biostudies-literature
| S-EPMC4817890 | biostudies-other
| S-EPMC5355119 | biostudies-literature
| S-EPMC6136860 | biostudies-other
| S-EPMC5706532 | biostudies-literature
| S-EPMC8223062 | biostudies-literature
| S-EPMC8409419 | biostudies-literature
| S-EPMC4541293 | biostudies-literature