Project description:To evaluate the yield of mini-bronchoalveolar lavage compared with that of directed bronchoalveolar lavage in critically ill patients with suspected coronavirus disease 2019-associated pulmonary aspergillosis.DesignA retrospective cohort study.SettingThe ICU of the Amsterdam University Medical Centers.PatientsPatients with confirmed coronavirus disease 2019 screened for coronavirus disease 2019-associated pulmonary aspergillosis.InterventionsMini-bronchoalveolar lavage and/or directed bronchoalveolar lavage.Measurements and main resultsIn total, 76 patients were included, 20 of whom underwent bronchoalveolar lavage, 40 mini-bronchoalveolar lavage, and 16 both mini-bronchoalveolar lavage and bronchoalveolar lavage. The percentage of samples with one or more positive Aspergillus detecting test (galactomannan, culture, polymerase chain reaction) did not differ significantly between bronchoalveolar lavage and mini-bronchoalveolar lavage (16.7% vs 21.4%). However, in mini-bronchoalveolar lavage samples, this was more frequently driven by a positive polymerase chain reaction than in bronchoalveolar lavage samples (17.9% vs 2.8%; p = 0.030). In 81% of patients (13/16) with both mini-bronchoalveolar lavage and bronchoalveolar lavage, the test results were in agreement. In 11 of 12 patients (92%) with first a negative mini-bronchoalveolar lavage, the subsequent bronchoalveolar lavage sample was also negative.ConclusionsWe found a similar percentage of positive test results in mini-bronchoalveolar lavage and bronchoalveolar lavage samples in patients with suspected coronavirus disease 2019-associated pulmonary aspergillosis. Our findings indicate that mini-bronchoalveolar lavage could be a useful tool for coronavirus disease 2019-associated pulmonary aspergillosis screening in ICU patients.
Project description:BackgroundThe pathogenesis of invasive aspergillosis (IA) is still unknown, but its progression is rapid and mortality rate remains high. Bronchoalveolar lavage fluid (BALF) galactomannan (GM) analysis has been used to diagnose IA. This study is aimed at making an accurate estimate of the whole accuracy of BALF-GM in diagnosing IA.MethodsAfter a systematic review of the study, a bivariate meta-analysis was used to summarize the specificity (SPE), the sensitivity (SEN), the positive likelihood ratios (PLR), and the negative likelihood ratios (NLR) of BALF-GM in diagnosing IA. The overall test performance was summarized using a layered summary receiver operating characteristic (SROC) curve. Subgroup analysis was performed to explore the heterogeneity between studies.ResultsA total of 65 studies that are in line with the inclusion criteria were included. The summary estimates of BALF-GM analysis are divided into four categories. The first is the proven+probable vs. possible+no IA, with an SPE, 0.87 (95% CI, 0.85-0.98); SEN, 0.81 (95% CI, 0.76-0.84); PLR, 9.78 (5.78-16.56); and NLR, 0.20 (0.14-0.29). The AUC was 0.94. The BALF-GM test for proven+probable vs. no IA showed SPE, 0.88 (95% CI, 0.87-0.90); SEN, 0.82 (95% CI, 0.78-0.85); PLR, 6.56 (4.93-8.75); and NLR, 0.24 (0.17-0.33). The AUC was 0.93. The BALF-GM test for proven+probable+possible vs. no IA showed SPE, 0.82 (95% CI, 0.79-0.95); SEN, 0.59 (95% CI, 0.55-0.63); PLR, 3.60 (2.07-6.25); and NLR, 0.31 (0.15-0.61). The AUC was 0.86. The analyses for others showed SPE, 0.85 (95% CI, 0.83-0.87); SEN, 0.89 (95% CI, 0.86-0.91); PLR, 6.91 (4.67-10.22); and NLR, 0.18 (0.13-0.26). The AUC was 0.94.ConclusionsThe findings of this BALF-GM test resulted in some impact on the diagnosis of IA. The BALF-GM assay is considered a method for diagnosing IA with high SEN and SPE. However, the patients' underlying diseases may affect the accuracy of diagnosis. When the cutoff is greater than 1, the sensitivity will be higher.
Project description:Comprehensive proteomic analysis of the protein expression landscape of bronchoalveolar lavage fluid during invasive pulmonary aspergillosis in murine and human samples. 38 murine BALF samples (10 Aspergillus fumigatus infected mice without immunosuppression and without invasive pulmonary aspergillosis (IPA), 19 immunosuppressed and infected mice with IPA and 9 immunosuppressed animals without infection) were analysed for their global protein expression. In addition, 54 human BALF specimen from patients with probable IPA (23 samples), proven IPA (4 cases) and 27 control samples from patients with unrelated pulmonary diseases were analysed for their global protein composition. Host responses and Aspergillus fumigatus-specific proteins detectable in BALF were studied.
Project description:Background: Invasive pulmonary aspergillosis (IPA) is an infection that primarily affects immunocompromised hosts, including hematological patients and stem-cell transplant recipients. The diagnosis of IPA remains challenging, making desirable the availability of new specific biomarkers. High-throughput methods now allow us to interrogate the immune system for multiple markers of inflammation with enhanced resolution. Methods: To determine whether a signature of alveolar cytokines could be associated with the development of IPA and used as a diagnostic biomarker, we performed a nested case-control study involving 113 patients at-risk. Results: Among the 32 analytes tested, IL-1?, IL-6, IL-8, IL-17A, IL-23, and TNF? were significantly increased among patients with IPA, defining two clusters able to accurately differentiate cases of infection from controls. Genetic variants previously reported to confer increased risk of IPA compromised the production of specific cytokines and impaired their discriminatory potential toward infection. Collectively, our data indicated that IL-8 was the best performing cytokine, with alveolar levels ?904 pg/mL predicting IPA with elevated sensitivity (90%), specificity (73%), and negative predictive value (88%). Conclusions: These findings highlight the existence of a specific profile of alveolar cytokines, with IL-8 being the dominant discriminator, which might be useful in supporting current diagnostic approaches for IPA.
Project description:ObjectiveTo assess the diagnostic efficacy of metagenomic next generation sequencing (mNGS) for proven invasive pulmonary aspergillosis (IPA).MethodsA total of 190 patients including 53 patients who had been diagnosed with proven IPA were retrospectively analyzed. Using the pathological results of tissue biopsy specimens as gold standard, we ploted the receiver operating characteristic (ROC) curve to determine the optimal cut-off value of mNGS species-specific read number (SSRN) of Aspergillus in bronchoalveolar lavage fluid (BALF)for IPA. Furthermore, we evaluated optimal cut-off value of mNGS SSRN in different populations.ResultsThe optimal cut-off value of Aspergillus mNGS SSRN in BALF for IPA diagnosis was 2.5 for the whole suspected IPA population, and 1 and 4.5 for immunocompromised and diabetic patients, respectively. The accuracy of mNGS was 80.5%, 73.7% and 85.3% for the whole population, immunocompromised and diabetic patients, respectively.ConclusionsThe mNGS in BALF has a high diagnostic efficacy for proven IPA, superioring to Aspergillus culture in sputum and BALF and GM test in blood and BALF. However, the cut-off value of SSRN should be adjusted when in different population.
Project description:BackgroundInvasive pulmonary aspergillosis (IPA) is a major cause of morbidity and mortality in patients with hematological malignancies in the setting of profound neutropenia and/or hematopoietic stem cell transplantation. Early diagnosis and therapy has been shown to improve outcomes, but reaching a definitive diagnosis quickly can be problematic. Recently, galactomannan testing of bronchoalveolar lavage (BAL) fluid has been investigated as a diagnostic test for IPA, but widespread experience and consensus on optical density (OD) cut-offs remain lacking.MethodsWe performed a prospective case-control study to determine an optimal BAL galactomannan OD cutoff for IPA in at-risk patients with hematological diagnoses. Cases were subjects with hematological diagnoses who met established definitions for proven or probable IPA. There were two control groups: subjects with hematological diagnoses who did not meet definitions for proven or probable IPA and subjects with non-hematological diagnoses who had no evidence of aspergillosis. Following bronchoscopy and BAL, galactomannan testing was performed using the Platelia Aspergillus seroassay in accordance with the manufacturer's instructions.ResultsThere were 10 cases and 52 controls. Cases had higher BAL fluid galactomannan OD indices (median 4.1, range 1.1-7.7) compared with controls (median 0.3, range 0.1-1.1). ROC analysis demonstrated an optimum OD index cutoff of 1.1, with high specificity (98.1%) and sensitivity (100%) for diagnosing IPA.ConclusionsOur results also support BAL galactomannan testing as a reasonably safe test with higher sensitivity compared to serum galactomannan testing in at-risk patients with hematological diseases. A higher OD cutoff is necessary to avoid over-diagnosis of IPA, and a standardized method of collection should be established before results can be compared between centers.
Project description:Invasive pulmonary aspergillosis (IPA) is a common complication of immunosuppression. Rapid diagnosis using molecular techniques is essential to improve patient survival. PCR techniques are promising in enhancing Aspergillus detection in blood and respiratory samples. We evaluate for the first time the performances of two commercial real-time PCR kits, the A. fumigatus Bio-Evolution and the MycoGENIE A. fumigatus for the detection of A. fumigatus DNA in bronchoalveolar lavage (BAL) from patients with and without IPA. Seventy-three BAL samples were included. Thirty-one of them corresponded to patients with probable IPA, 11 to patients with possible IPA, and 31 to patients without aspergillosis, according to the 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. In the probable IPA group, A. fumigatus Bio-Evolution and the MycoGENIE A. fumigatus real-time PCR kits showed a specificity of 100% and a sensitivity of 81% and 71%, respectively. The A. fumigatus Bio-Evolution detected Aspergillus DNA in the 14 BAL samples with a positive Aspergillus culture result, whereas the MycoGENIE A. fumigatus PCR result was positive only for 12. In the possible IPA group, there were no positive real-time PCR or positive Aspergillus culture results. For the patients without aspergillosis, no positive result was observed for real-time PCR kit, despite the presence of various other non-Aspergillus pathogens in this group. Our study demonstrates an excellent specificity and a good sensitivity of A. fumigatus DNA detection in BAL samples with both kits.
Project description:To assess whether transcriptional differences exist in the epithelial tissue and the inflammatory infiltrate of invasive Aspergillus tracheobronchitis in patients with severe influenza or severe COVID-19, we performed GeoMx spatial transcriptomics on four biopsy samples in total: two of patients with influenza-associated pulmonary aspergillosis (IAPA) and two of patients with COVID-19-associated pulmonary aspergillosis (CAPA). Several regions of interest (ROIs) were delineated in each biopsy sample, and transcriptomic data was derived of each of these ROIs using GeoMx with a whole transcriptome atlas with SARS-CoV-2 spike-in.
Project description:PCR in bronchoalveolar lavage (BAL) fluid has not been accepted as a diagnostic criterion for invasive pulmonary aspergillosis (IPA). We conducted a systematic review assessing the diagnostic accuracy of PCR in BAL fluid with a direct comparison versus galactomannan (GM) in BAL fluid. We included prospective and retrospective cohort and case-control studies. Studies were included if they used the EORTC/MSG consensus definition criteria of IPA and assessed ?80% of patients at risk for IPA. Two reviewers abstracted data independently. Risk of bias was assessed using QUADAS-2. Summary sensitivity and specificity values were estimated using a bivariate model and reported with a 95% confidence interval (CI). Nineteen studies published between 1993 and 2012 were included. The summary sensitivity and specificity values (CIs) for diagnosis of proven or probable IPA were 90.2% (77.2 to 96.1%) and 96.4% (93.3 to 98.1%), respectively. In nine cohort studies strictly adherent to the 2002 or 2008 EORTC/MSG criteria for reference standard definitions, the summary sensitivity and specificity values (CIs) were 77.2% (62 to 87.6%) and 93.5% (90.6 to 95.6%), respectively. Antifungal treatment before bronchoscopy significantly reduced sensitivity. The diagnostic performance of PCR was similar to that of GM in BAL fluid using an optical density index cutoff of 0.5. If either PCR or GM in BAL fluid defined a positive result, the pooled sensitivity was higher than that of GM alone, with similar specificity. We conclude that the diagnostic performance of PCR in BAL fluid is good and comparable to that of GM in BAL fluid. Performing both tests results in optimal sensitivity with no loss of specificity. Results are dependent on the reference standard definitions.