Project description:Pulmonary Alveolar Proteinosis (PAP) patients exhibit an acquired deficiency of biologically active granulocyte-macrophage colony stimulating factor (GM-CSF) attributable to GM-CSF specific autoantibodies. PAP alveolar macrophages are foamy, lipid-filled cells with impaired surfactant clearance and markedly reduced expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPAR?) and the PPAR?-regulated ATP binding cassette (ABC) lipid transporter, ABCG1. An open label proof of concept Phase II clinical trial was conducted in PAP patients using rituximab, a chimeric murine-human monoclonal antibody directed against B lymphocyte specific antigen CD20. Rituximab treatment decreased anti-GM-CSF antibody levels in bronchoalveolar lavage (BAL) fluid, and 7/9 patients completing the trial demonstrated clinical improvement as measured by arterial blood oxygenation.This study sought to determine whether rituximab therapy would restore lipid metabolism in PAP alveolar macrophages.BAL samples were collected from patients pre- and 6-months post-rituximab infusion for evaluation of mRNA and lipid changes.Mean PPAR? and ABCG1 mRNA expression increased 2.8 and 5.3-fold respectively (p???0.05) after treatment. Lysosomal phospholipase A2 (LPLA2) (a key enzyme in surfactant degradation) mRNA expression was severely deficient in PAP patients pre-treatment but increased 2.8-fold post-treatment. In supplemental animal studies, LPLA2 deficiency was verified in GM-CSF KO mice but was not present in macrophage-specific PPAR? KO mice compared to wild-type controls. Oil Red O intensity of PAP alveolar macrophages decreased after treatment, indicating reduced intracellular lipid while extracellular free cholesterol increased in BAL fluid. Furthermore, total protein and Surfactant protein A were significantly decreased in the BAL fluid post therapy.Reduction in GM-CSF autoantibodies by rituximab therapy improves alveolar macrophage lipid metabolism by increasing lipid transport and surfactant catabolism. Mechanisms may involve GM-CSF stimulation of alveolar macrophage ABCG1 and LPLA2 activities by distinct pathways.
Project description:Pulmonary alveolar proteinosis (PAP) is a severe respiratory disease characterized by dyspnea caused by accumulation of surfactant protein. Dysfunction of alveolar macrophages (AMs), which regulate the homeostasis of surfactant protein, leads to the development of PAP; for example, in mice lacking BTB and CNC homology 2 (Bach2). However, how Bach2 helps prevent PAP is unknown, and the cell-specific effects of Bach2 are undefined. Using mice lacking Bach2 in specific cell types, we found that the PAP phenotype of Bach2-deficient mice is due to Bach2 deficiency in more than two types of immune cells. Depletion of hyperactivated T cells in Bach2-deficient mice restored normal function of AMs and ameliorated PAP. We also found that, in Bach2-deficient mice, hyperactivated T cells induced gene expression patterns that are specific to other tissue-resident macrophages and dendritic cells. Moreover, Bach2-deficient AMs exhibited a reduction in cell cycle progression. IFN-? released from T cells induced Bach2 expression in AMs, in which Bach2 then bound to regulatory regions of inflammation-associated genes in myeloid cells. Of note, in AMs, Bach2 restricted aberrant responses to excessive T cell-induced inflammation, whereas, in T cells, Bach2 puts a brake on T cell activation. Moreover, Bach2 stimulated the expression of multiple histone genes in AMs, suggesting a role of Bach2 in proper histone expression. We conclude that Bach2 is critical for the maintenance of AM identity and self-renewal in inflammatory environments. Treatments targeting T cells may offer new therapeutic strategies for managing secondary PAP.
Project description:Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-M?) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-M? in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5-4 × 106 iPSC-M? yields efficient airway residence with conversion of iPSC-M? to an alveolar macrophage (AM?) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-M? as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AM? phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes.
Project description:Pulmonary alveolar proteinosis (PAP) comprises a heterogenous group of diseases characterized by abnormal surfactant accumulation resulting in respiratory insufficiency, and defects in alveolar macrophage- and neutrophil-mediated host defense. Basic, clinical and translational research over the past two decades have raised PAP from obscurity, identifying the molecular pathogenesis in over 90% of cases as a spectrum of diseases involving the disruption of GM-CSF signaling. Autoimmune PAP represents the vast majority of cases and is caused by neutralizing GM-CSF autoantibodies. Genetic mutations that disrupt GM-CSF receptor signaling comprise a rare form of hereditary PAP. In both autoimmune and hereditary PAP, loss of GM-CSF signaling blocks the terminal differentiation of alveolar macrophages in the lungs impairing the ability of alveolar macrophages to catabolize surfactant and to perform many host defense functions. Secondary PAP occurs in a variety of clinical diseases that presumedly cause the syndrome by reducing the numbers or functions of alveolar macrophages, thereby impairing alveolar macrophage-mediated pulmonary surfactant clearance. A similar phenotype occurs in mice deficient in the production of GM-CSF or GM-CSF receptors. PAP and related research has uncovered a critical and emerging role for GM-CSF in the regulation of pulmonary surfactant homeostasis, lung host defense, and systemic immunity.
Project description:The key aim of this experiment is to characterize the iPSC-Mφ population before and after pulmonary transplantation. For this purpose the following cell populations were compared: (i) transplanted iPSC-Mφ, (ii) Mφ obtained by in vitro differentiation of murine lineage-negative bone marrow cells (BM-Mφ), (iii) non-differentiated CD45.1 iPSC, (iv) murine alveolar Mφ (AMφ) isolated from the BALF of healthy control mice, and (v) iPSC-Mφ recovered from the transplanted animals two months after (PMT-Mφ).
Project description:This case report demonstrates 44-year old man, presenting with recurring clinical pneumonias during a period of over 1 year. The patient was clinically affected with, i.a., weight loss, finger clubbing and severely reduced diffusion capacity. Repetitive chest x-rays showed bilateral and consolidating infiltrates, and a high-resolution computed tomography of the thorax (HRCT) exposed ground glass opacities superimposed on a reticular pattern as the so-called 'crazy paving' pattern. A bronchoscopic alveolar lavage revealed alveolar proteinaceous material compatible with the diagnosis pulmonary alveolar proteinosis (PAP). PAP is a rare syndrome where surfactant is accumulated in the alveoli, causing respiratory disease in typically young to middle-aged patients with male predominance. Both symptoms and prognosis are variable, and range from spontaneous remission to terminal respiratory failure. The standard treatment is whole lung lavage, where surfactant is mechanically rinsed from the lungs. The lack of specific clinical symptoms makes it easy to overlook the diagnosis, as supported by this case report. It serves as a reminder, that the findings of a crazy paving pattern on HRCT in young adults should alert of this rare disease, and advises on the further examinations required to make the diagnosis.
Project description:BackgroundAutoimmune pulmonary alveolar proteinosis (aPAP) is a rare disease characterized by progressive surfactant accumulation and hypoxemia. It is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, which pulmonary alveolar macrophages require to clear surfactant. Recently, inhaled GM-CSF was shown to improve the partial pressure of arterial oxygen in patients with aPAP.MethodsIn a double-blind, placebo-controlled, three-group trial, we randomly assigned patients with aPAP to receive the recombinant GM-CSF molgramostim (300 μg once daily by inhalation), either continuously or intermittently (every other week), or matching placebo. The 24-week intervention period was followed by an open-label treatment-extension period. The primary end point was the change from baseline in the alveolar-arterial difference in oxygen concentration (A-aDo2) at week 24.ResultsIn total, 138 patients underwent randomization; 46 were assigned to receive continuous molgramostim, 45 to receive intermittent molgramostim, and 47 to receive placebo. Invalid A-aDo2 data for 4 patients (1 in each molgramostim group and 2 in the placebo group) who received nasal oxygen therapy during arterial blood gas measurement were replaced by means of imputation. For the primary end point - the change from baseline in the A-aDo2 at week 24 - improvement was greater among patients receiving continuous molgramostim than among those receiving placebo (-12.8 mm Hg vs. -6.6 mm Hg; estimated treatment difference, -6.2 mm Hg; P = 0.03 by comparison of least-squares means). Patients receiving continuous molgramostim also had greater improvement than those receiving placebo for secondary end points, including the change from baseline in the St. George's Respiratory Questionnaire total score at week 24 (-12.4 points vs. -5.1 points; estimated treatment difference, -7.4 points; P = 0.01 by comparison of least-squares means). For multiple end points, improvement was greater with continuous molgramostim than with intermittent molgramostim. The percentages of patients with adverse events and serious adverse events were similar in the three groups, except for the percentage of patients with chest pain, which was higher in the continuous-molgramostim group.ConclusionsIn patients with aPAP, daily administration of inhaled molgramostim resulted in greater improvements in pulmonary gas transfer and functional health status than placebo, with similar rates of adverse events. (Funded by Savara Pharmaceuticals; IMPALA ClinicalTrials.gov number, NCT02702180.).
Project description:Hereditary pulmonary alveolar proteinosis (herPAP) constitutes a rare, life threatening lung disease characterized by the inability of alveolar macrophages to clear the alveolar airspaces from surfactant phospholipids. On a molecular level, the disorder is defined by a defect in the CSF2RA gene coding for the GM-CSF receptor alpha-chain (CD116). As therapeutic options are limited, we currently pursue a cell and gene therapy approach aiming for the intrapulmonary transplantation of gene-corrected macrophages derived from herPAP-specific induced pluripotent stem cells (herPAP-iPSC) employing transcriptional activator-like effector nucleases (TALENs). Targeted insertion of a codon-optimized CSF2RA-cDNA driven by the hybrid cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoter into the AAVS1 locus resulted in robust expression of the CSF2RA gene in gene-edited herPAP-iPSCs as well as thereof derived macrophages. These macrophages displayed typical morphology, surface phenotype, phagocytic and secretory activity, as well as functional CSF2RA expression verified by STAT5 phosphorylation and GM-CSF uptake studies. Thus, our study provides a proof-of-concept, that TALEN-mediated integration of the CSF2RA gene into the AAVS1 safe harbor locus in patient-specific iPSCs represents an efficient strategy to generate functionally corrected monocytes/macrophages, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of herPAP.
Project description:Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Ralpha) and nonbinding affinity-enhancing (GM-CSF-Rbeta) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Ralpha-encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Ralpha, severely reducing GM-CSF binding, receptor signaling, and GM-CSF-dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP.