Unknown

Dataset Information

0

Schistosoma haematobium Extracellular Vesicle Proteins Confer Protection in a Heterologous Model of Schistosomiasis.


ABSTRACT: Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.

SUBMITTER: Mekonnen GG 

PROVIDER: S-EPMC7563238 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Schistosoma haematobium</i> Extracellular Vesicle Proteins Confer Protection in a Heterologous Model of Schistosomiasis.

Mekonnen Gebeyaw G GG   Tedla Bemnet A BA   Pickering Darren D   Becker Luke L   Wang Lei L   Zhan Bin B   Bottazzi Maria Elena ME   Loukas Alex A   Sotillo Javier J   Pearson Mark S MS  

Vaccines 20200724 3


Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle  ...[more]

Similar Datasets

| S-EPMC3934627 | biostudies-literature
| PRJNA12616 | ENA
| PRJNA443709 | ENA
| PRJNA12617 | ENA
| PRJNA78265 | ENA
| S-EPMC3315496 | biostudies-literature
| S-EPMC7207159 | biostudies-literature
| S-EPMC9074780 | biostudies-literature
2019-04-09 | PXD011137 | Pride
| S-EPMC4569442 | biostudies-literature