Project description:Mesenchymal stromal cells are a potential therapeutic for Acute Respiratory Distress Syndrome due to COVID-19, with pleiotropic immunomodulatory and reparative properties.This study investigated the safety and efficacy of ORBCEL-C (CD362 enriched umbilical cord-derived Mesenchymal Stromal Cells) in this patient population.
Project description:This project is aimed at characterizing the interactions of SARS-CoV-2 Spike protein and its variants with multiple full-length antibodies and monitoring the accompanying conformational dynamics. Different categories of antibodies are tested that recognize different domains of the Spike protein. The project aims at identifying the effects of weak, moderate and strong neutralizing antibodies on Spike protein and decipher their mechanisms of action. In addition to the direct binding effects, distal allosteric effects are also determined. A range of biophysical experiments, biochemical assays, and molecular dynamics simulations are used as orthogonal approaches. The rationale is to identify regions on the SARS-CoV-2 Spike protein that acts as indicators for antibody binding and use these hotspots to develop better neutralizing antibodies against SARS-CoV-2 and any future viral pandemics.
Project description:We describe the cellular response to SARS-CoV-2 infections combined with antibody and/or dexamethasone treatment in Syrian and Roborovski dwarf hamsters
Project description:The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.
Project description:BackgroundMonoclonal antibodies (mAb) that neutralize SARS-CoV-2 decrease hospitalization and death compared to placebo in patients with mild to moderate COVID-19; however, comparative effectiveness is unknown. We report the comparative effectiveness of bamlanivimab, bamlanivimab-etesevimab, and casirivimab-imdevimab.MethodsA learning health system platform trial in a U.S. health system enrolled patients meeting mAb Emergency Use Authorization criteria. An electronic health record-embedded application linked local mAb inventory to patient encounters and provided random mAb allocation. Primary outcome was hospital-free days to day 28. Primary analysis was a Bayesian model adjusting for treatment location, age, sex, and time. Inferiority was defined as 99% posterior probability of an odds ratio < 1. Equivalence was defined as 95% posterior probability the odds ratio is within a given bound.FindingsBetween March 10 and June 25, 2021, 1935 patients received treatment. Median hospital-free days were 28 (IQR 28, 28) for each mAb. Mortality was 0.8% (1/128), 0.8% (7/885), and 0.7% (6/922) for bamlanivimab, bamlanivimab-etesevimab, and casirivimab-imdevimab, respectively. Relative to casirivimab-imdevimab (n = 922), median adjusted odds ratios were 0.58 (95% credible interval [CI] 0.30-1.16) and 0.94 (95% CI 0.72-1.24) for bamlanivimab (n = 128) and bamlanivimab-etesevimab (n = 885), respectively. These odds ratios yielded 91% and 94% probabilities of inferiority of bamlanivimab versus bamlanivimab-etesevimab and casirivimab-imdevimab, and an 86% probability of equivalence between bamlanivimab-etesevimab and casirivimab-imdevimab.InterpretationAmong patients with mild to moderate COVID-19, bamlanivimab-etesevimab or casirivimab-imdevimab treatment resulted in 86% probability of equivalence. No treatment met prespecified criteria for statistical equivalence. Median hospital-free days to day 28 were 28 (IQR 28, 28) for each mAb.Funding and registrationThis work received no external funding. The U.S. government provided the reported mAb. This trial is registered at ClinicalTrials.gov, NCT04790786.