Unknown

Dataset Information

0

Regulation of chaperone function by coupled folding and oligomerization.


ABSTRACT: The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the ?-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.

SUBMITTER: Mas G 

PROVIDER: S-EPMC7577714 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of chaperone function by coupled folding and oligomerization.

Mas Guillaume G   Burmann Björn M BM   Sharpe Timothy T   Claudi Beatrice B   Bumann Dirk D   Hiller Sebastian S  

Science advances 20201021 43


The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the <i>Escherichia coli</i> Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-c  ...[more]

Similar Datasets

| S-EPMC3136475 | biostudies-literature
| S-EPMC6742908 | biostudies-literature
| S-EPMC4937829 | biostudies-literature
2021-05-28 | PXD022239 | Pride
2022-12-09 | PXD025219 | Pride
| S-EPMC5078798 | biostudies-literature
| S-EPMC3784538 | biostudies-literature
| S-EPMC5988418 | biostudies-literature
| S-EPMC8614707 | biostudies-literature
| S-EPMC10952152 | biostudies-literature