Unknown

Dataset Information

0

Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries.


ABSTRACT: MXenes are a recently discovered class of two-dimensional materials that have shown great potential as electrodes in electrochemical energy storage devices. Despite their promise in this area, MXenes can still suffer limitations in the form of restricted ion accessibility between the closely spaced multistacked MXene layers causing low capacities and poor cycle life. Pillaring, where a secondary species is inserted between layers, has been used to increase interlayer spacings in clays with great success but has had limited application in MXenes. We report a new amine-assisted pillaring methodology that successfully intercalates silica-based pillars between Ti3C2 layers. Using this technique, the interlayer spacing can be controlled with the choice of amine and calcination temperature, up to a maximum of 3.2 nm, the largest interlayer spacing reported for an MXene. Another effect of the pillaring is a dramatic increase in surface area, achieving BET surface areas of 235 m2 g-1, a sixty-fold increase over the unpillared material and the highest reported for MXenes using an intercalation-based method. The intercalation mechanism was revealed by different characterization techniques, allowing the surface chemistry to be optimized for the pillaring process. The porous MXene was tested for Na-ion battery applications and showed superior capacity, rate capability and remarkable stability compared with those of the nonpillared materials, retaining 98.5% capacity between the 50th and 100th cycles. These results demonstrate the applicability and promise of pillaring techniques applied to MXenes providing a new approach to optimizing their properties for a range of applications, including energy storage, conversion, catalysis, and gas separations.

SUBMITTER: Maughan PA 

PROVIDER: S-EPMC7581309 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries.

Maughan Philip A PA   Seymour Valerie R VR   Bernardo-Gavito Ramon R   Kelly Daniel J DJ   Shao Shouqi S   Tantisriyanurak Supakorn S   Dawson Robert R   Haigh Sarah J SJ   Young Robert J RJ   Tapia-Ruiz Nuria N   Bimbo Nuno N  

Langmuir : the ACS journal of surfaces and colloids 20200419 16


MXenes are a recently discovered class of two-dimensional materials that have shown great potential as electrodes in electrochemical energy storage devices. Despite their promise in this area, MXenes can still suffer limitations in the form of restricted ion accessibility between the closely spaced multistacked MXene layers causing low capacities and poor cycle life. Pillaring, where a secondary species is inserted between layers, has been used to increase interlayer spacings in clays with great  ...[more]

Similar Datasets

| S-EPMC8047692 | biostudies-literature
| S-EPMC10636724 | biostudies-literature
| S-EPMC5844706 | biostudies-literature
| S-EPMC5580042 | biostudies-literature
| S-EPMC7541059 | biostudies-literature
| S-EPMC10246696 | biostudies-literature
| S-EPMC4827671 | biostudies-literature
| S-EPMC8186495 | biostudies-literature
| S-EPMC10574978 | biostudies-literature
| S-EPMC9935991 | biostudies-literature