Unknown

Dataset Information

0

Drug Administration Routes Impact the Metabolism of a Synthetic Cannabinoid in the Zebrafish Larvae Model.


ABSTRACT: Zebrafish (Danio rerio) larvae have gained attention as a valid model to study in vivo drug metabolism and to predict human metabolism. The microinjection of compounds, oligonucleotides, or pathogens into zebrafish embryos at an early developmental stage is a well-established technique. Here, we investigated the metabolism of zebrafish larvae after microinjection of methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'N-5F-ADB) as a representative of recently introduced synthetic cannabinoids. Results were compared to human urine data and data from the in vitro HepaRG model and the metabolic pathway of 7'N-5F-ADB were reconstructed. Out of 27 metabolites detected in human urine samples, 19 and 15 metabolites were present in zebrafish larvae and HepaRG cells, respectively. The route of administration to zebrafish larvae had a major impact and we found a high number of metabolites when 7'N-5F-ADB was microinjected into the caudal vein, heart ventricle, or hindbrain. We further studied the spatial distribution of the parent compound and its metabolites by mass spectrometry imaging (MSI) of treated zebrafish larvae to demonstrate the discrepancy in metabolite profiles among larvae exposed through different administration routes. In conclusion, zebrafish larvae represent a superb model for studying drug metabolism, and when combined with MSI, the optimal administration route can be determined based on in vivo drug distribution.

SUBMITTER: Park YM 

PROVIDER: S-EPMC7582563 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drug Administration Routes Impact the Metabolism of a Synthetic Cannabinoid in the Zebrafish Larvae Model.

Park Yu Mi YM   Meyer Markus R MR   Müller Rolf R   Herrmann Jennifer J  

Molecules (Basel, Switzerland) 20200929 19


Zebrafish (<i>Danio rerio</i>) larvae have gained attention as a valid model to study in vivo drug metabolism and to predict human metabolism. The microinjection of compounds, oligonucleotides, or pathogens into zebrafish embryos at an early developmental stage is a well-established technique. Here, we investigated the metabolism of zebrafish larvae after microinjection of methyl 2-(1-(5-fluoropentyl)-1<i>H</i>-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'<i>N</i>-5F-ADB) as a  ...[more]

Similar Datasets

| S-EPMC10454396 | biostudies-literature
| S-EPMC4540740 | biostudies-literature
| S-EPMC7544081 | biostudies-literature
| S-EPMC6315001 | biostudies-literature
| S-EPMC6232664 | biostudies-literature
| S-EPMC6752765 | biostudies-literature
| S-EPMC4186433 | biostudies-literature
| S-EPMC8773422 | biostudies-literature
| S-EPMC8190279 | biostudies-literature
| S-EPMC3005146 | biostudies-literature