Analyzing cannabinoid-induced abnormal behavior in a zebrafish model.
Ontology highlight
ABSTRACT: In this study, we investigated locomotor activity and responses to repeated light and dark stimuli to assess cannabinoid-induced abnormal behavior in zebrafish larvae (Danio rerio), as an alternative to standard rodent models. To induce the desired responses, we used cannabidiol and WIN55,212-2, two major cannabinoid components. A repeated light and dark test was used to assess how drug exposure influences locomotory responses. Larvae were examined after moderate cannabidiol and WIN55,212-2 exposure and at 24 h after transfer to untreated water. We found that cannabidiol did not produce a dose-dependent inhibitory effect on locomotor activity, with both 0.5 and 10 ?g/mL concentrations reducing movement velocity and the total distance moved. However, 10 ?g/mL cannabidiol was observed to attenuate the responses of larvae exposed to darkness. No differences were detected between the control and cannabidiol-treated groups after 24 h in fresh water. Fish treated with WIN55,212-2 at 0.5 and 1 ?g/mL showed virtually no activity, even in darkness, whereas a concentration of 10 ?g/mL induced mortality. A 24-h period in fresh water had the effect of reversing most of the drug-induced immobilization, even in the WIN55,212-2-treated groups. Larvae were also evaluated for their responses to cannabidiol subsequent to an initial exposure to WIN55,212-2, and it was accordingly found that treatment with cannabidiol could attenuate WIN55,212-2-induced abnormal immobilization, whereas equivalent doses of cannabidiol and WIN55,212-2 produced a mixed response. In conclusion, the behavioral effects of the two cannabinoids cannabidiol and WIN55,212-2 appear to be ratio dependent. Furthermore, the repeated light and dark test could serve as a suitable method for assaying drug-induced behavior.
SUBMITTER: Hasumi A
PROVIDER: S-EPMC7544081 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA