Unknown

Dataset Information

0

DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals-Composition and Correlation Analysis of Kinetic Barriers.


ABSTRACT: Understanding the hydrogen atom abstraction (HAA) reactions of N-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes attacked by •CH2CN, Me• and Et• radicals. Using the computed data, we investigated the correlations of the activation and free energy barriers with their components, including the intrinsic barrier, the thermal contribution of the thermodynamic reaction energy to the kinetic barriers, the activation Gibbs free energy correction and the activation zero-point vibrational energy correction. Furthermore, to describe the dependence of the activation and free energy barriers on the thermodynamic reaction energy or reaction Gibbs free energy, we used a three-variable linear model, which was demonstrated to be more precise than the two-variable Evans-Polanyi linear free energy model and more succinct than the three-variable Marcus-theory-based nonlinear HAA model. The present work provides not only a more thorough understanding of the compositions of the barriers to the HAA reactions of NHC-boranes and the HAA reactivities of the substrates but also fresh insights into the suitability of various models for describing the relationships between the kinetic and thermodynamic physical quantities.

SUBMITTER: Qu HJ 

PROVIDER: S-EPMC7582687 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

DFT Investigation of Hydrogen Atom Abstraction from NHC-Boranes by Methyl, Ethyl and Cyanomethyl Radicals-Composition and Correlation Analysis of Kinetic Barriers.

Qu Hong-Jie HJ   Yuan Lang L   Jia Cai-Xin CX   Yu Hai-Tao HT   Xu Hui H  

Molecules (Basel, Switzerland) 20201001 19


Understanding the hydrogen atom abstraction (HAA) reactions of <i>N</i>-heterocyclic carbene (NHC)-boranes is essential for extending the practical applications of boron chemistry. In this study, density functional theory (DFT) computations were performed for the HAA reactions of a series of NHC-boranes attacked by <sup>•</sup>CH<sub>2</sub>CN, Me<sup>•</sup> and Et<sup>•</sup> radicals. Using the computed data, we investigated the correlations of the activation and free energy barriers with the  ...[more]

Similar Datasets

| S-EPMC6611065 | biostudies-literature
| S-EPMC6650822 | biostudies-literature
| S-EPMC2682590 | biostudies-literature
| S-EPMC7081285 | biostudies-literature
| S-EPMC6814854 | biostudies-literature
| S-EPMC4313564 | biostudies-literature
| S-EPMC3852885 | biostudies-literature
| S-EPMC6036922 | biostudies-literature
| S-EPMC6217389 | biostudies-literature
| S-EPMC4257584 | biostudies-literature