Sub-Nanometer Cryo-EM Density Map of the Human Heterodimeric Amino Acid Transporter 4F2hc-LAT2.
Ontology highlight
ABSTRACT: Heterodimeric amino acid transporters (HATs) are protein complexes mediating the transport of amino acids and derivatives thereof across biological membranes. HATs are composed of two subunits, a heavy and a light chain subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. The human HAT 4F2hc-LAT2 is composed of the type-II membrane N-glycoprotein 4F2hc (SCL3A2) and the L-type amino acid transporter LAT2 (SLC7A8), which are covalently linked to each other by a conserved disulfide bridge. Whereas LAT2 catalyzes substrate transport, 4F2hc is important for the successful trafficking of the transporter to the plasma membrane. The overexpression, malfunction, or absence of 4F2hc-LAT2 is associated with human diseases, and therefore, this heterodimeric complex represents a potential drug target. The recombinant human 4F2hc-LAT2 can be functionally overexpressed in the methylotrophic yeast Pichia pastoris, and the protein can be purified. Here, we present the cryo-EM density map of the human 4F2hc-LAT2 amino acid transporter at sub-nanometer resolution. A homology model of 4F2hc-LAT2 in the inward-open conformation was generated and fitted into the cryo-EM density and analyzed. In addition, disease-causing point mutations in human LAT2 were mapped on the homology model of 4F2hc-LAT2, and the possible functional implications on the molecular level are discussed.
SUBMITTER: Jeckelmann JM
PROVIDER: S-EPMC7584034 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA