Enriching ISA brown and Shaver white breeder diets with sources of n-3 polyunsaturated fatty acids increased embryonic utilization of docosahexaenoic acid.
Ontology highlight
ABSTRACT: There is limited information on feeding egg-type chick breeders n-3 polyunsaturated fatty acids (PUFA) and its impact on hatching egg quality and embryonic fatty acid (FA) utilization. We investigated the effects of feeding brown and white egg-type chick breeders diets containing sources of n-3 PUFA on egg composition, apparent embryonic FA utilization, and intestinal FA transporter in hatchlings. Twenty-six-week-old ISA brown and Shaver white breeders were fed either 1) control (CON); 2) CON + 1% of microalgae (DMA, Aurantiochytrium limacinum) fermentation product, as a source of docosahexaenoic acid (DHA); or 3) CON + 2.60% of coextruded full-fat flaxseed and pulse mixture (FFF, 1:1 wt/wt) as a source of ?-linolenic acid (ALA). Test diets had similar total n-3 and n-6:n-3 ratio. Eggs were hatched, and residual yolk (RY) samples taken for FA analyses. Apparent embryonic FA utilization was calculated by subtracting concentration of FA in RY from concentration of FA in yolk before incubation. There was an interaction between strains and diets (P < 0.05) on DHA in phospholipid and triglyceride fractions of yolk. Both n-3 PUFA sources increased DHA to a greater extent in Shaver white than in ISA brown. The interactive effect of strains and diets (P = 0.019) on embryonic utilization of ALA was such that DMA and FFF reduced ALA utilization, and this pattern was more prevalent in Shaver white birds than in ISA brown birds. There was no interaction between strains and diets on DHA utilization (P > 0.05). Embryos from hens fed n-3 PUFA sources used less total FA in phospholipid fraction (P < 0.001), and they preferentially used more DHA than CON embryos. Shaver white embryos used more (P < 0.05) ALA and DHA than ISA brown embryos. Although data suggested Shaver white had higher propensity of depositing DHA than ISA brown, irrespective of strain, feeding n-3 PUFA modified embryonic pattern of FA utilization toward utilization of DHA.
SUBMITTER: Akbari Moghaddam Kakhki R
PROVIDER: S-EPMC7587772 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA