Unknown

Dataset Information

0

Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics.


ABSTRACT: The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390?W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1?. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC7591490 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with a  ...[more]

Similar Datasets

| S-EPMC5242369 | biostudies-literature
| S-EPMC5056510 | biostudies-literature
| S-EPMC8637014 | biostudies-literature
| S-EPMC7839785 | biostudies-literature
| S-EPMC5528413 | biostudies-other
| S-EPMC7013672 | biostudies-literature
| S-EPMC3038863 | biostudies-literature
| S-EPMC6799837 | biostudies-literature
| S-EPMC7915356 | biostudies-literature
| S-EPMC5108989 | biostudies-other