ABSTRACT: Metal salt soaking-torrefaction conversion technology was investigated. It was found that AlCl3 pretreatment of pubescens favored observably the yield of liquid and small-molecular products in torrefaction via changing the composition and structure of the raw material. The maximum conversion of pretreated samples, washed (PSW) and Y liquid were 15.5 and 10.8 wt % (with 0.26 wt % monosaccharides, 0.26 wt % carboxylic acids, 0.38 wt % furan compounds, and 1.28 wt % phenols), where 20.4 wt % hemicellulose, 22.9 wt % cellulose, and 5.7 wt % lignin were converted, respectively. However, for pretreated samples (PS), the maximum conversion and Y liquid reached 44.2 and 32.1 wt %, respectively, along with 96.0 wt % hemicellulose and 31.8 wt % cellulose converted, yielding 2.39 wt % monosaccharides, 5.14 wt % carboxylic acids, 2.60 wt % furan compounds and 10.52 wt % phenols, indicating obvious catalytic effects of residual AlCl3 on the decomposition of the three major components in torrefaction. Two-dimensional HSQC and electrospray ionization mass spectrometry (ESI-MS) characterizations further confirmed the dominant formation of oligomers derived from holocellulose, lignin, and cross-linkage involving the lignin-carbohydrate complex, indicating that the catalytic thermal cleavage of ?-O-4, C-O-C, ?-?, 5-5, 4-O-5, C?-C?, and ?-O-4 linkages by aluminum species in the samples benefited the yield of liquid as well as monophenols.