Unknown

Dataset Information

0

A Microfluidic Culture Platform to Assess Axon Degeneration.


ABSTRACT: The field of microfluidics allows for the precise spatial manipulation of small amounts of fluids. Within microstructures, laminar flow of fluids can be exploited to control the diffusion of small molecules, creating desired microenvironments for cells. Cellular neuroscience has benefited greatly from devices designed to fluidically isolate cell bodies and axons. Microfluidic devices specialized for neuron compartmentalization are made of polydimethylsiloxane (PDMS) which is gas permeable, is compatible with fluorescence microscopy, and has low cost. These devices are commonly used to study signals initiated exclusively on axons, somatodendritic compartments, or even single synapses. We have also found that microfluidic devices allow for rapid, reproducible interrogation of axon degeneration. Here, we describe the methodology for assessing axonal degeneration in microfluidic devices. We describe several use cases, including enucleation (removal of cell bodies) and trophic deprivation to investigate axon degeneration in pathological and developmental scenarios, respectively.

SUBMITTER: Yong Y 

PROVIDER: S-EPMC7597676 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Microfluidic Culture Platform to Assess Axon Degeneration.

Yong Yu Y   Hughes Christopher C   Deppmann Christopher C  

Methods in molecular biology (Clifton, N.J.) 20200101


The field of microfluidics allows for the precise spatial manipulation of small amounts of fluids. Within microstructures, laminar flow of fluids can be exploited to control the diffusion of small molecules, creating desired microenvironments for cells. Cellular neuroscience has benefited greatly from devices designed to fluidically isolate cell bodies and axons. Microfluidic devices specialized for neuron compartmentalization are made of polydimethylsiloxane (PDMS) which is gas permeable, is co  ...[more]

Similar Datasets

| S-EPMC9719897 | biostudies-literature
| S-EPMC4712910 | biostudies-literature
| S-EPMC6200633 | biostudies-literature
| S-EPMC1558906 | biostudies-literature
| S-EPMC4877588 | biostudies-literature
| S-EPMC3426455 | biostudies-literature
2022-07-14 | GSE207894 | GEO
| S-EPMC4752442 | biostudies-literature
| S-EPMC8190127 | biostudies-literature
| S-EPMC9684529 | biostudies-literature