Characterization of Local Structures of Confined Imidazolium Ionic Liquids in PVdF-co-HFP Matrices by High Pressure Infrared Spectroscopy.
Ontology highlight
ABSTRACT: The nanoscale ion ordering of ionic liquids at confined interfaces under high pressures was investigated in this study. 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][NTf2])/poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-co-HFP) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2])/PVdF-co-HFP were prepared and characterized by using high-pressure infrared spectroscopy. Under ambient pressure, imidazolium C2-H and C4,5-H absorptions were blue-shifted in frequency due to the presence of PVdF-co-HFP. However, the absorption of anionic ?a SO2 did not reveal any significant shifts in frequency upon dilution by PVdF-co-HFP. The experimental results suggest that PVdF-co-HFP disturbs the local structures of the imidazolium C-H groups instead of the anionic SO2 groups. The frequency shifts of C4,5-H became dramatic for the mixtures at high pressures. These results suggest that pressure-enhanced ionic liquid-polymer interactions may play an appreciable role in IL-PVdF-co-HFP systems under high pressures. The pressure-induced blue-shifts due to the PVdF-co-HFP additions were more obvious for the [HMIM][NTf2] mixtures than for [EMIM][NTf2] mixtures.
SUBMITTER: Wang TH
PROVIDER: S-EPMC7600376 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA